Nanoindentation for Characterizing Wood & Related Systems

Johannes Konnerth and Wolfgang Gindl

Institute of Wood Science and Technology BOKU University - Vienna

??

University of Natural Resources and Applied Life Science, Vienna Department of Material Sciences and Process Engineering

ΓШΓ

Nanoindentation – basic principle DSI depth sensing indentation

Nanoindentation tips Microscope images

Berkovich Three-sided pyramidal tip

Conospherical tip

?

Life Science, Vienna

Engineering

University of Natural Resources and Applie

Department of Material Sciences and Process

19.07.2007

Institute of Wood Science and Technology I Johannes Konnerth

Nanoindentation sample preparation - surface roughness

?

University of Natural Resources and Applied Life Science, Vienna Department of Material Sciences and Process Engineering

Indenter

Surface

Surface

Nanoindentation – Sample preparation

Nanoindentation on Wood Scales in Wood-Adhesive bonds

Mechanical properties of Adhesive Films Tensile Test

macro

ESPI

??

Mechanical properties of Adhesives in the bond line

??

Mechanical properties of Adhesives

??

Mechanical properties of Adhesives Nanoindentation – Deformation Work

Mechanical properties of Adhesives Nanoindentation – Creep

Wood cell walls in the Interphase region

Melamine-modified spruce wood

Reference

Melamine-modified

Cell wall micromechanics

Cell wall micromechanics

University of Natural Resources and Applied Life Science, Vienna Department of Material Sciences and Process Engineering

Fibers

Cell wall micromechanics

Cellulose fibers

??

Wood cell walls in the Interphase region Nanoindentation-Mapping

Wood cell walls in the Interphase region Nanoindentation-Mapping

?

Influence of tip geometry and Micro Fibril Angle on measurements

New Tip geometry

Berkovich 142,3° 100nm tip radius

Cone 60°, 150nm

Publications related to Nanoindentation

- Gindl W, Gupta HS, Grunwald C (2002) Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity unsing nano-indentation, Canadian Journal of Botany-Revue Canadienne de Botanique, 80, 10, 1029-1033
- Gindl W, Gupta HS (2002) Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation, Composites Part A: Applied Science and Manufacturing, 33, 8, 1141-1145

??

- Gindl W, Gupta HS, Schoberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by Nanoindentation, Applied Physics A: Materials Science & Processing, 79, 8, 2069-2073
- Gindl W, Schoberl T (2004) The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements, Composites Part A: Applied Science and Manufacturing, 35, 11, 1345-1349
- Gindl W, Schoberl T, Jeronimidis G (2004) The interphase in phenol-formaldehyde and polymeric methylene diphenyl-di-isocyanate glue lines in wood, International Journal of Adhesion and Adhesives, 24, 4, 279-286
- Konnerth J, Jäger A, Eberhardsteiner J, Müller U, and Gindl W (2006) Elastic properties of adhesive polymers, Part II: Polymer films and bond lines by means of nanoindentation. Journal of Applied Polymer Science, 102, 2, 1234-1239
- **Konnerth J, Gindl W** (2006) The interphase in wood-adhesive bond lines by nanoindentation. Holzforschung, 60, 429-433
- Gindl W, Konnerth J, Schoberl T (2006) Nanoindentation of regenerated cellulose fibres. Cellulose, 13, 1, 1-7
- Gindl W, Schoberl T, Keckes J (2006) Structure and properties of pulp fibre-reinforced composite with regenerated cellulose matrix, Applied Physics A: Materials Science & Processing, 83, 1, 19-22
- Konnerth J, Valla A, Gindl W (2007) Nanoindentation-mapping of a wood-adhesive bond. Applied Physics A: Materials Science & Processing, DOI: 10.1007/s00339-007-3976-y

Engineering

2

University of Natural Resources and Applied Life Science, Vienna Department of Material Sciences and Process

FШF

Johannes Konnerth and Wolfgang Gindl

BOKU - University of Natural Resources and Applied Life Science Vienna - Austria

Department of Material Science and Process Engineering

Institute of Wood Science and Technology

: ::::