MICRO X-RAY COMPUTED TOMOGRAPHY STUDY OF ADHESIVE BONDS IN WOOD

F. Kamke, J. Nairn, A. Sinha, L. Muszynski, D. Ching, P. McKinley, Dept. Wood Science & Engineering, Oregon State University *M. Zauner* Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland *X. Xiao*

Advanced Photon Source, ANL, Argonne, Illinois

SWST 2015 International Convention

Jackson Lake Lodge, Grand Teton National Park, Wyoming USA June 2015

Phenol-Formaldehyde in Douglas-fir Polyurethane in Southern Pine 500 um Epoxy in Oak PVAc in Walnut MDI in Southern Pine

All fluorescence micrographs shown in cross-section view (RT plane) of parallel laminated wood

What does adhesive do?

Transfers stress from one substrate to the next.

Does adhesive penetration influence stress transfer?

Research Goal:

Develop a numerical model to simulate wood-composite jointperformance that quantitatively accounts for the role of adhesive penetration

Sponsors:

NSF Industry/University Cooperative Research Center for Wood-Based Composites

USDA National Institute of Food and Agriculture

Collaborators:

• Oregon State University

Project leadership, mechanical testing, specimen prep., modeling

Advance Photon Source, Argonne National Laboratory

Tomography beamline access on synchrotron device

• ETH Zürich, Switzerland

Mechanical test device

• US Forest Products Laboratory

Nano-indentation & x-ray fluorescence microscopy

• Member organizations of the Wood-Based Composites Center Resin formulation and technical guidance

Outline:

- Methodology
 - Part 1 Linear elastic model development
 - Part 2 Non-linear model development
 - Part 3 Moisture durability of bondline (see McKinley poster)
- In situ mechanical testing of bondline during XCT
- Digital volume correlation
- Examples of modeling results

Methodology – Part 1 Linear-elastic model

Methodology – Part 2 Non-linear model

Methodology – Part 3 Moisture durability

Micro-Bond Testing

Non-destructive, linear range, tensile loading Same specimen used for micro X-ray computed tomography DIC of surface deformation compared to model results

Load Cell: +/- 100 N (+/- 0.1 N) Displacement: 0.16 mm (+/- 0.0001 mm)

Micro-Bond Testing During step-wise XCT scan

Mirror m

Scintillator Film

Lens

Camera

Specimens glued in grips

- dhe

Load Frame (top cap removed)

Test device designed and built by M. Zauner (Diss. ETH No. 21620)

In situ Micro-Bond Testing Destructive lap-shear test during step-wise XCT scan

Load Cell: +/- 100 N (+/- 0.1 N) Displacement: 0.16 mm (+/- 0.0001 mm)

In situ Micro-Bond Testing Destructive lap-shear test during step-wise XCT scan

10 mm

Load Cell: +/- 1 kN (+/- 0.03 kN) Displacement: 0.0002 mm/sec

In-situ Micro-Bond Testing Step-wise XCT Scan

Baseline

3 Materials for <u>Segmentation</u>

- Air (lumens)
- Wood cell walls
- Adhesive

Gray-Scale Histogram of Voxels

attenuation

Increasing

Increasing attenuation

Digital Volume Correlation Douglas-fir bonded with PF adhesive

HIGH+

Strain Step 0 to 3

HIGH-

Method adapted from: Bar-Kochba E., et al. 2014. A fast iterative digital volume correlation algorithm for large deformations. Experimental Mechanics. DOI: 10.1007/s11340-014-9874-2

XCT & Lap-Shear Testing

Douglas-fir bonded with PF adhesive


```
Step 5
```

Modeling by Material Point Method (MPM)

Physical system defined by voxels contained in tomogram (MPM model points), including material segmentation.

Material properties assigned to MPM points based on segmentation.

Model Simulation of Bondline Shear Stress Probability Distribution of Local Stress in 3D Space

- HP = Hybrid PoplarSYP = Southern PineDF = Douglas-fir
- Higher probability of large local stress condition means bond is more likely to fail.
- Depends of adhesive penetration pattern, wood micro-structure, and adhesive modulus.

Acknowledgements

National Science Foundation

Industry/University Cooperative Research Center for Wood-Based Composites

