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‘ Overview -

 Why cellulose nanofiber (CNF)-filled
composites?

« UMaine’s cellulose nanocomposites
research program

e Engineering thermoplastics

e Thermoplastic starch carrier for CNF
e Drying CNF without agglomeration

e Challenges
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.........

Stone Age ....... Bronze Age .......... Iron Age ................ Nano Age?

»Nanotech is 3" Industrial Revolution

»US Gov. R&D in Nanotech = $1.5 billion/yr

» Surface of Nanos in 1 raindrop = 1 football field
»Cellulose: Maine’s Niche to Compete in Nanotech




Why cellulose nanofibrils?

» Renewable resource and broad availability

= No impact of environmental pollution due to biodegradability
= No toxic by-products after combustion

* L ow machine wear in processing

» Low density and high strength compared with inorganic fillers
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Lignocellulose is a Renewable Resource Abundant in Maine
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Research Theme #1

Synthesis of Nano-fibers
from Lignocellulose

Sources

Objective: Produce
Inexpensive lignocellulosic-
based nanofibers with known
and consistent properties.

Research Theme #2

Functionalization of
Lignocellulose
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Objective: Achieve precise
control of nanofiber surface
and interfacial chemistry to
obtain desired adhesion and
dispersion.

Research Theme #3

Materials
Characterization

Objective: Characterize
cellulose nanofibril-derived
materials and determine
structure/property relationships
from nano- to macro- scales.




ResearchTheme #4 | [ %| Objective: Develop multf
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K= techniques to predict materials
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Objective: Develop pilot-scale
processes to utilize nanoscale
lignocellulose derived fibers
and CNFs in structural
composites.

Research Theme #5
Structural Composites

Objective: Develop nanoscale
devices, structures, and films
for nanoelectronics, tissue
engineering, sensing,
actuation, and separation
membrane applications.

Research Theme #6

Smart Materials and
Devices




Physical Infrastructure for Cellulose Nanotechnology

- -

Processing Lab for Cellulose
Nanocomposites in Structural/
Off Shore Wind Applications - AEWC

Cellulose Nanofiber Production and
Functionalization Laboratory - FBRI

Nanoscale Imaging & Characterization
Laboratory - LASST




» Because of the
hydrophilic nature of
cellulose nanofibrils many
studies have focused on
nanocomposites based
on hydrophilic polymer
matrices.

» There have been very
few research studies
focusing on CNF In
hydrophobic polymers
such as PE and PP.

Challenges using CNF in Hydrophobic Polymers
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» ETP defined as materials which can be used structurally, typically

>

Why engineering thermoplastics (ETP)?

replacing metals, wood, glass, or ceramics.

These high-performance polymers provide innovative solutions that

save weight and reduce costs.
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Thermal stability

» The processing temperature of wood/natural fiber composites are

typically restricted to around 200 C.

» The earliest experiments to reinforce engineering thermoplastics
and pronounced pyrolytic
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nanofibrillated cellulose
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ETPs
MCC
Lubricant

Methods-Production

High Speed
Mixer

Melt Blend Dry Ground
Brabender Mixture

Injection
Molding

ASTM Test
Samples




Comparison of ETPC’s and Commodity

Plastics

Mechanical Properties

Mechanical Properties of PP, PA6 and PET-PTT Blend Composites

Properties
Groups TS.(MPa)  TM.(GPa)  EM.(GPa)  NIS.(J/m)
Polypropylene 276 139 139 16.]
PP+33%WoodFlour  33.1 338 319 187
Nylon 6(PA6) 376 2.89 2.65 64.5
PA6+20%MCC 525 321 376 29.1
PA6+20%MCC+1%NC 592 367 375 313
PET-PTTBlend 248 111 210 47
PETPTT+20%MCC 363 1.68 2.96 2147

TS =Tensile strength, TM=Tensile modulus of elasticity, FM.= Flexural modulus of
elasticity and N.I.S =Notched Izod impact strength

Jacobson et al. Sixth Inter. Conf. on Woodfiber-Plastic Composites

Kiziltas A. et al. Wood and Fiber Science, 2010:42 (2): 165-176

Kiziltas A. et al. submitted to Polymer Testing. POTE-D-10-00383.
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Tensile Modulus of Elasticity (GPa)

Stiffness Enhancement of MCC-Fille

ETPC’s Using Nanoclay
To Investigate the reinforcement effects of Nanoclay on the stiffness of
20% MCC- filled engineering thermoplastic composites.

To also investigate the effect of Nanoclay on the MCC/Nanoclay/PA 6
composites thermal properties.
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Thermoplastic Starch

» The literature is confusing and describes thermoplastic,
destructurized, gelatinized and plasticized starch.

» Structure IS overcome with a combination of plasticizer,
heat and pressure to process the starch.

» Plasticization is the easiest and cheapest way to put
technological materials in a processable state.

The water penetrates the As more water enters the The hydrogen bonds weaken. ~ The freed amylose thickens

_ . starch, hydrating f fom the ~~ granule, it starts to swell Amylose strands work their ~ and stabilizes the water
ma_:m“"p'“””“”’e's outside to the inside. way out of the granule and info  around it
unitorm Hydrogen bonds befween the the water. Amylopectin strands ~ The mixture becomes thick

molecules force the granule to stay inside the granule. Some  and viscous.
hold its shape. granules collaps.




Our Approach

Base Polymer

(Hydrophobic Matrix)

Nanoscale Additive

Carrier System

T (Filler, Dispersed Phase NC) T (Thermoplastic Starch)
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Hydrophobic Thermoplastic Composites

with better dispersion and improved properties
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Formulations

TP5 Compasition
Sample Code | Starch | Glycerol | Water CN | GlycerolWater | Plasticizer/Starch Total
TP 50 13 33 - 043 l 100
INCTPS 473 1423 | 4123 14 043 l 100
LONCTPS 43 133 12.3 29 043 l 100
[3NCTPS 413 12.73 1.73 4] 043 l 100
Composition of Composites
Sample Code PP TPS SNCTPS | 1I0NCTPS | 15NCTPS Total
Neat PP 100 - - - - 100
PP+TPS 90 10 - - - 100
PP+5NCTPS 90 - 10 - - 100
PP+10NCTPS | 90 - - 10 100
PPEISNCEPS 90 - - 10 100
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TPS and NCTPS filled PP composites showed comparable or lower

tensile strength and modulus compared to control samples.
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Flexural Properties of the Composites
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TPS and NCTPS filled PP composites showed comparable or lower flexural
strength and modulus compared to control samples like tensile properties.
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TGA and DTGA results showed that thermal stability of composites
decreased marginally with the addition of TPS and NCTPS.



EM Micrographs of TPS-Based Comp
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The PP matrix was inert, we had no TPS—matrix interactions. From SEM
observation, we can visualize that the fibrils were embedded in TPS. This is due to
strong interactions between the cellulose fibrils and the plasticized starch matrix.




Major issue : Processing by classical
method (extrusion, injection) using
cellulose micro-nanofibrils in dry state
without any chemical modification.

Scaling-up of homogenization
technologies.

Energy and enzymes consumption.
Reduction of clogging problems.
Controlling cellulose micro-nanofibrils
agglomeration.

Reduction of production costs.
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Cellulose and Hydrogen Bonding

Cellobiose based unit

OH OH oy ©
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Challenges

e Aqueous nature of cellulose nanofibrils
because of the rich hydroxyl groups on the
surface

— Agglomeration

— Absorption of atmospheric
moisture

— Poor compatibility between polar
cellulose nanofibril and apolar
polymer matrix
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Different morphologies of nanocellulose by different drying processes

UMaine nanocellulose dried by air | JRS nanocellulose dried by CPD UMaine nanocellulose dried by CPD | UMaine nanocellulose dried by FD
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Ideal dry form of cellulose
nanofibrils for polymer processing
with thermoplastics




Planned Surface Modification
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‘ Silane treated wood fibers for reinforcing fillers in thermoplastic composites

Experimental Concept Experimental Results

Surface of cellulose or wood fiber treated with organic l
silanes which have two or more domains for fillers and - 16603
matrices. ) o 2901
"v.,' O 273174
.-C] Cl/\\“/\s:i/o\“/
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Dispersion of CNF 1n composites

Cellulose nanofibrils were dispersed in the wood-inorganic composite through a
sodium silicate solution.
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Fracture surface of wood-inorganic composite (5 wt. % of cellulose nanofibrils)



Conclusions

« Thermoplastic-CNF composites with enhanced material
properties are possible.

e Ongoing challenges for scale-up of utilizing cellulose
nanofibrils in hydrophobic thermoplastics will be the
need for obtaining large quantities of CNF in the dry
state.

 For the process of producing nano-fibrillated cellulose on
the commercial scale, scale up of adequate
homogenization technologies is still needed.

e Control of CNF agglomeration and scalable drying
technologies is also a big challenge.

« Surface treatment of CNF via physical and/or chemical
modification methods will be important to tailor CNF
surfaces for application in specific polymer matrices.
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