Fastener Corrosion Issues: Testing, Codes, and Design

Samuel L. Zelinka & Douglas R. Rammer

U.S. Department of Transportation
Federal Highway Administration
Overview

• Fundamentals of Corrosion
• Designing to Minimize Corrosion
• Codes & Standards
 • AWC
 • ICC-ES
 • AWPA E-12
• Current Research
 • Simpson Strong Tie
 • Forest Products Laboratory
Fundamentals

- All metals corrode
 - Metastable
- Corrosion rate
 - Reaction kinetics
 - Key figure of merit
 - Depends on
 - Chemical environment
 - Physical environment
 - Corrosion products
Fundamentals

- **Galvanic Series**
 - Only valid for seawater
 - Thermodynamic ranking
 - Does NOT rank corrosion rates

Low Alloy Steel
2.9 mils/year

Zinc 0.6 mils/year

ASM Handbook Vol 13b
Design Considerations

• **Protective Coatings**
 • **Metallic Coatings**
 • Anodic coatings (galvanizing)
 • “Self healing”
 • Cathodic coatings
 • Pitting corrosion at defects
 • **Corrosion performance**
 • Corrosion rate of coating
 • Defects in coating
Design Considerations

• Non-Metallic Coatings & Barriers
 • Coatings do not “corrode”
 • Subject to degradation
 • Pitting corrosion at defects
 • Currently researched at FPL
 • Based on epoxy coated rebar techniques
• Barriers
 • Same concerns as coatings
Codes & Standards

• **AF&PA AWC**
 • Corrosion fact sheet
 • *Minimum of hot-dip galvanized or equivalent*
 • *PWF Design Specifications (Draft)*
 • “Fasteners in contact with preservative treated wood shall be of Type 304 or 316 stainless steel”
 • *Exception: CCA treated wood, moisture content less than 19%,*
 • *hot-dip galvanized allowed*
Codes & Standards

• **AWPA E-12**
 - *Metal coupons held between wood blocks*
 - 49°C ± 1°C (120°F± 2°F) with RH of 90% ± 1%
 - Minimum 240 hours exposure
 - *Coupons cleaned, corrosion rate reported*
Codes & Standards

• ICC-ES Acceptance Criteria A326
 • Approved March 1, 2006
 • Min 10 replicates
 • Fasteners driven into wood
 • Then follows AWPA E12 exposures
 • Fasteners cleaned & visually inspected
 • Fastener shall pass if it has less than 25% surface corrosion
Current Testing

- **Simpson Strong Tie**
 - 1,800 AWPA E12 Tests
 - 3,000+ Modified E12 Tests
 - *Using actual fasteners*

![Figure 1](attachment://Figure_1.png)
Current Testing

• **Forest Products Laboratory**
 • **Electrical Impedance Spectroscopy (EIS)**

• **Pros**
 • Test at MC or T of interest
 • Measure diffusion controlled reactions
 • Prevent permanent polarization of preservative
 • Model corrosion via equivalent circuit

• **Cons**
 • Requires expensive equipment
 • Data analysis requires modeling

TMS Lett. 2(1) pp.15-16
Current Testing

- **Forest Products Laboratory**
 - DC methods
 - LPR, Polarization

- **Pros**
 - Simple data analysis
 - Rapid
 - Test at temperature of interest
 - Theory well studied

- **Cons**
 - Affected by solution resistance
 - Not well suited to solid wood
Current Testing

- Forest Products Laboratory
- Original DC Tests
 - Solutions of CCA, ACQ
 - Diluted to 0.25 pcf (etc.)
 - 1018 steel, 304 stainless, zinc, and 430 stainless
- Results
 - Steels < 4µm/yr
 - Zinc (no results)
- Conclusions
 - Preservatives change corrosiveness upon entering wood

New Testing
- “Extracts” of ACQ
- Real fasteners
- Wood matched to exposure tests
- Preliminary data well correlated to exposure results

Conclusions
- Preservatives change corrosiveness upon entering wood
Current Testing

• **Forest Products Laboratory**

• **Pros**
 - "Real world" data
 - Direct measurement

• **Cons**
 - Time consuming
 - Cleaning techniques cause additional uncertainties
 - Surface areas not well defined
Current Testing

- Forest Products Laboratory
- Surface Area Algorithm
Current Testing

- **Forest Products Laboratory**
- Andy Baker (1992 FPJ)
- 17 year exposure CCA-I, CCA-II, ACA
- 80°F~100% RH
- Reported % weight loss

Using algorithm, we converted to corrosion rate

<table>
<thead>
<tr>
<th>Corrosion Rate (µm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>20.0</td>
</tr>
<tr>
<td>30.0</td>
</tr>
<tr>
<td>40.0</td>
</tr>
<tr>
<td>50.0</td>
</tr>
<tr>
<td>60.0</td>
</tr>
<tr>
<td>70.0</td>
</tr>
<tr>
<td>80.0</td>
</tr>
</tbody>
</table>

- **CCA I**
- **CCA II**
- **ACA**
Current Testing

- Forest Products Laboratory
- Data Comparison
Summary

- **Corrosion** - A kinetic phenomenon
- **Testing** - Quantitative methods being developed
- **Design**

<table>
<thead>
<tr>
<th>Product</th>
<th>Design Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>Combining with a different metal</td>
</tr>
<tr>
<td>Metallic Coatings (anodic)</td>
<td>Combining with a different metal</td>
</tr>
<tr>
<td></td>
<td>Corrosion rate of coating</td>
</tr>
<tr>
<td>Metallic Coatings (cathodic)</td>
<td>Combining with a different metal</td>
</tr>
<tr>
<td></td>
<td>Defects in coating</td>
</tr>
<tr>
<td></td>
<td>Construction damage to coatings</td>
</tr>
<tr>
<td>Organic/Ceramic Coatings</td>
<td>Defects in coating</td>
</tr>
<tr>
<td></td>
<td>Damage to coating during construction</td>
</tr>
<tr>
<td>Barriers</td>
<td>Defects in barrier</td>
</tr>
<tr>
<td></td>
<td>Damage to barrier during construction</td>
</tr>
</tbody>
</table>