Modeling Formation and Bonding of Wood Composites

Chunping Dai FPInnovations – Forintek Division Vancouver, Canada

October, 2007

Empirical Approach vs Modeling

Modeling offers a new approach to advancing the science of wood composites, by applying *mathematics*, *physics*, *mechanics* and *computer simulation* to the field of *wood science*.

Objectives

To develop basic theories and models for wood composites, particularly:

- Mat formation,
- Mat consolidation,
- Hot pressing, and
- Bonding.

Model Development: Theory and Methodology

Mathematical Modeling

<u>Theories:</u> Geometric Probability and Statistics, Material Science, Physics, Mechanics and Thermal Dynamics.

Computer Simulation

<u>Methodology:</u> Discrete Object Simulation, Monte Carlo Simulation, FD/FE Method, Computer Graphics and Programming

Key Results: Fundamentals of Composite Manufacturing

Mat Formation: A Stochastic Network of Wood Strands

FPInnovations

Mat Formation: Horizontal Density Distribution

Mat Formation: Size Effect on Variability

Theoretical basis for analyzing mat formation uniformity

Mat Consolidation: Compression Mechanics of Wood and Porous Strand Structure

Theoretical basis for modeling pressing and vertical density profile

Mat Consolidation: Porosity Variations

FPInnovations

Mat Consolidation: Inter-element Contact Development

Mat Consolidation: Permeability (k)

Theoretical basis for linking strand dimensions to hot pressing

Computer Simulation of Hot Pressing: Temperature

Computer Simulation of Hot Pressing: Moisture Content

Computer Simulation of Hot Pressing: Gas Pressure

Computer Simulation of Hot Pressing: Vertical Density Profile

Modeling Wood Composite Bonding

FPInnovations

Resin Distribution: Resin Coverage – Content Relationship

Bonding Strength between Two Wood Strands

Internal Bond (IB) Strength of OSB

Predicted Effect of Strand Thickness on IB

Predicted Effect of Wood Density on IB

Analytical and computer simulation models are developed which can predict: mat formation, consolidation, hot pressing and bonding of wood composites.

- The results improve the fundamental understanding of processing characteristics and performance of wood composites.
- The proposed theories and methodologies open a new path for research and education in wood composites.

References

- He, G., Yu, C., Dai, C. 2007. Theoretical modeling of bonding characteristics and performance of wood composites. Part 3: Bonding strength between two wood elements. Wood and fiber science. 39(4): 566-577.
- Dai C. Yu C. and Zhou, C. 2007. Theoretical modeling of bonding characteristics and performance of wood composites: Part 1. Inter-element contact. Wood and Fiber Science. 39(1): 48-55.
- Dai C., Yu C, Groves K. and Lohrasebi H. 2007. Theoretical modeling of bonding characteristics and performance of wood composites: Part 2. Resin distribution. Wood and Fiber Science. 39(1): 56-70.
- Dai, C. C. Yu, C. Xu and G. He. 2007. Heat and mass transfer in wood composite panels during hot pressing: Part IV. Experimental investigation and model validation. Holzforschung. 61(1): 83-88.
- Dai, C., Yu, C. and Zhou, X. 2005. Heat and mass transfer in wood composite panels during hot pressing: Part 2. Modeling void formation and mat permeability. Wood and Fiber Science. 37(2): 242-257.
- Dai, C. and C. Yu. 2004. Heat and mass transfer in wood composite panels during hot pressing: Part 1. A physical-mathematical model. Wood and Fibre Science. 36(34): 585-597.
- Dai, C. 2001. Viscoelastic behaviour of wood composite mats during consolidation. Wood and Fibre Science. Vol.33, No.3: 353-363.
- Dai, C. and Steiner, P.R. 1997. On horizontal density variations in randomly-formed short-fibre wood composite boards. Composites Part A. 28(A): 57-64.
- Dai, C. and Steiner, P.R. 1994. Spatial structure of wood composites in relation to processing and performance characteristics. Part III. Modelling and simulation of a random multi-layered flake mat. Wood Science and Technology. Vol.28, No.3: 229-239.
- Dai, C. and Steiner, P.R. 1993. Compression behaviour of randomly-formed wood flake mats. Wood and Fibre Science. Vol.25, No.4: 349-358.