Yusuf Sudo HADI

IUFRO Division 5 Conference

D5.05 Advances in wood-polymer and modified-wood composites

Session #2 Tuesday Oct 30th, 10am-12pm

PHYSICAL AND MECHANICAL PROPERTIES OF METHYL METACRYLATE IMPREGNATED BETUNG BAMBOO (*Dendrocalamus asper*)

Yusuf Sudo HADI¹, W. Sony WUISANG¹, Nurwati HADJIB² and Marga UTAMA³

PHYSICAL AND MECHANICAL PROPERTIES OF METHYL METACRYLATE IMPREGNATED BETUNG BAMBOO (*Dendrocalamus asper*)

¹⁾ Bogor Agricultural University, Bogor, Indonesia
 ²⁾ Forest Products Research Institute, Bogor, Indonesia
 ³⁾ National Atomic Energy Agency, Jakarta, Indonesia

- Indonesia has 143 bamboo species, (1,200 world); covering 2.1 mill. ha
- Variety in
 - Size: diameter, thickness, length, node
 - Color: green, yellow, black, motive
 - Strength
- Used for building materials, bridge, music instruments, water-pipe, furniture, agricultural-equipments & handy-craft.

Species Variety "Medium"

Building Material Bogor Agricultural University, Indonesia

Outer Curtain

Bogor Agricultural University, Indonesia

Outer Curtain

Chicken Cage

- Betung bamboo (Dendrocalamus asper)
 - Length 20 m, O 20 cm
 - Nodes 40-60 cm, wall thick 1-1.5 cm
- Length between nodes
 - Bottom, Middle, Top: (Short, Longer, Shortens again)
- Important Properties
 - Thick wall, very strong, durable
 - Young & tender shoot: Vegetable.

Building Material

BUILDING MATERIAL

- Logs Production:
 - 20-30 million m³/a (1990-1997)
 - 6-13 million m³/a (1998-2005)
- Forest Resources
 - Natural Forest
 - Plantation Forest, Fast Growing Species
- Bamboo
 - Widely Planted
 - Common used for any purpose.

MMA BAMBOO

- Stronger
- Resistant to moist
 - Tropical Area
 - Bogor, Rainy City, 4,500 mm/a
- More Durable
 - Subterranean Termite
 - Dry Wood Termite.

- Hadjib et al. (1999): (Indonesia)
 - -MMA rubber-wood
 - -60Co gamma ray; 20 kGy dose
- The MMA Wood:
 - -19.5 % Polymer Loading,
 - –Higher Density, Lower MC
 - Better: Dimensional Stability, MOE, MOR, Compression & Shear Strengths.

- Bakraji *et al.* (2001):
 - Butylene-acrylate, ⁶⁰Co gamma radiation; 10, 20, and 30 kGy
 - Radiation dose affects Polymer Loading
 - Higher radiation dose \rightarrow Higher PL
 - Higher wood density \rightarrow Lower PL
- Ajji (2006):
 - Gamma rad 35 kGy is quite enough

- Garnett & Loo-Teck (1996): Urea enhances grafting of MMA & PL
- Husain et al. (1999)
 - MMA; vacuum (50 mm Hg) at 70 °C for over 24 hours to remove water,
 - Methyl alcohol as swelling solvent; ⁶⁰Co gamma ray at 30 kGy
 - Vacuum did not enhance properties, but methyl alcohol enhanced PL, grafting & mechanical properties.

- Yildiz et al. (2005)
 - Full-, half-, & quarter-loading of monomer increased mechanical strength of pine
 - -Higher PL increased the strength
 - Mix styrene & MMA gave the best results comparing to styrene and MMA woods in strength and price

Superson and a second s

- Impregnation of styrene to bamboo
 - Improved technical properties & biological resistance (Liese, 1995).
- Lawniczak & Kozlowski (1993) bamboopolystyrene (WPG ~ 20 %)
 - Static bending strength > 60 %
 - Static bending in wet condition > 3 x
 - Hardness > 3 x
 - Moisture deformation < 2 x</p>
 - Water adsorption < 3 x.

RESEARCH PURPOSE

- Physical & mechanical properties MMA betung bamboo
 - ⁶⁰Co gamma rad 40 kGy
 - Urea added into MMA 1 %, 3 % & 5 %
 - Without Urea (0 %), Control
 - Original or Untreated Bamboo

METHODS

- Dendrocalamus asper from Bogor
- Cut to testing sizes: physical and mechanical properties
- Oven at 70 °C, 24 hours
- Vacuumed: 35 mm Hg; 15 minutes
- Immersed: MMA & urea; 24 hours
- Urea concentration: 0, 1, 3 & 5 %.

METHODS

- Wrapped: Al-foil & PE plastic sheet
- Radiation ⁶⁰Co gamma ray; 40 kGy
- Oven at 70°C; 24 hours
- Conditioning: two weeks
- Comparison: Original or Untreated.

METHODS

- Research design
 - Factorial 2 x 4 completely randomized
- The factors:
 - Vacuum: With & Without
 - Urea dose: 0, 1, 3 & 5 %
- Six replication for each treatment
- Original bamboo was also tested.

RESULTS

PHYSICAL PROPERTIES

Polymer Loading (%)

POLYMER LOADING

- PL: 10.7-12.8 % (ā = 12.0 %)
 - < MMA Rubber wood</p>
 - Density bamboo > rubber wood
- Bakraji *et al.* (2001)
 Higher wood density → Lower PL
- Vacuum: Not affect \rightarrow PL
- Urea: Affect → PL
 Urea (12.4) > Without (10.8)

Density (g/cm3)

DENSITY

- MMA (0.77) > Untreated (0.71)
- Vacuum not significant
- Urea not significant

Moisture Content (%)

MOISTURE CONTENT

- MMA (8.8) < Untreated (11.8)
- Vacuum not significant
- Urea not significant

Water Absoption (%)

WATER ADSOPRTION

- MMA (23.3) < Untreated (25.2)
- Vacuum not significant
- Urea significant
 - -Urea (22.7) < Control; (25.0)

Swelling (%)

SWELLING

- MMA (12.0) < Untreated (3.4)
- Vacuum not significant
- Urea significant
 - -Urea (2.5) < Control (6.2)

Shrinkage (%)

SHRINKAGE

- MMA (5.3) < Untreated (10.2)
- Vacuum not significant
- Urea significant
 - -Urea (5.1) < Control (5.9)

MECHANICAL PROPERTIES

MOE (kg/cm2)

A CONTRACTOR

MOE (x 1,000)

- MMA (115) > Untreated (108)
- Vacuum not significant
- Urea not significant

MOR (kg/cm2)

MOR

- MMA (943) > Untreated (811)
- Vacuum not significant
- Urea significant
 - -Urea (907) < Control (1075)

Compression (kg/cm2)

COMPRESSION

- MMA (695) > Untreated (633)
- Vacuum not significant
- Urea significant
 - -Urea (677) < Control (749)

Tensile (kg/cm2)

TENSILE

- MMA (1434) > Untreated (1263)
- Vacuum not significant
- Urea significant
 - -Urea (1405) < Control (1520)

Hardness (kg/cm2)

THE REPORT

HARDNESS

- MMA (670) > Untreated; (551)
- Vacuum significant
 - -Vacuum (694) > Control (646)
- Urea significant
 - -Urea (628) < Control (797)

CONCLUSIONS

- Polymer loading reached 10.7-12.8 %
- Physical properties of MMA bamboo were better than the origin
- Vacuum treatment reduced mechanical properties, except hardness enhanced
- Urea enhanced polymer loading and physical properties but reduced mechanical properties, and addition at 1 % could be satisfied.

AKNOWLEDGEMENT

- Ministry of National Education, Indonesia
 - Ministry of Forestry, Indonesia
 - Dr J. Winandy, FPL, Madison, WI, USA

