IDENTIFICATION OF THE "NON-STANDARD" DEFORMATION BEHAVIOUR OF EUROPEAN BEECH AND NORWAY SPRUCE DURING THE COMPRESSION LOADING

Faculty of Forestry and Wood Technology

Martin Brabec^{*}, Department of Wood Science, Mendel University in Brno *martin.brabec@mendelu.cz

INTRODUCTION

When the wood is **compressed parallel to grain**, the strain field exhibits three zones: **a) two damage zones** $(d_{1;2})$ located near the compression plates and **b) one middle zone** (m) located between them. Such strain field heterogeneity is commonly described with help of an analytical model of sample as a **series of three springs**.

The decrease of strain as the load increases, i.e. a **negative increment of strain** in the load direction (ε_L) was examined. It is hypothesized that, the negative ε_L increment stems from the **expansion** of the middle **stiffer spring** in a series of three springs allowed by the **failure** of the two springs representing the "**less stiff**" damage zones.

The clear special orthotropic blocks with a **cross section 20 × 20 mm²** and different lengths (h = 30, 40, 50 and **60 mm**) from **European beech** (*Fagus sylvatica*, L.) and **Norway spruce** (*Picea abies*, L. Karst.) were cut. A basic matt white thin paint overlaid by a pigmented black paint was sprayed on the samples' side to be captured.

The **loading** parallel to the grain was carried out by the universal testing machine **Zwick Z050/TH 3A**. A pointwise ε_L data were obtained by the "**clip-on**" extensometers (Fig. 1).

A **full-field strain** data were collected by the **stereovision** optical system (Fig. 2). An area of interest (AOI) covered a whole patterned samples' surface and a resulting scale was **12.5 px mm⁻¹**. A data **acquisition** rate was **4 Hz**. The strains were calculated using Lagrange notation in **Vic-3D** v. 2012 (Correlated Solutions).

A **subset** size of 25×25 **pixels** and subset **step** of **5 pixels** were chosen based on the pre-study examining the ratio between the density of the computed points and the efficiency of recognition the speckle pattern.

Figure 1: "Clip-on" extensometers

Figure 2: The stereovision system

RESULTS & DISCUSSION

Strain field characterization

The **length** of zone *m* increased as a **function of** *h* (Fig. 4). The real length of zones $d_{1;2}$ varied by about 4 - 5 mm for all *h* and both spruce and beech as well. The relative **constant length** of zones $d_{1;2}$ was reflected in their decreasing proportion of *h* with an increasing *h*.

The substantial changes occurred in the range of **plastic deformations**. For a few samples, the **expansion** of zone *m* was indirectly confirmed by the successive **disappearance** of one or both zones $d_{1;2}$ from the ε_{L} plots (Fig. 4 – right) due to compression and consequent stiffening of them.

Figure 4: Deformation sub-regions consisting of strain in the loading direction (ε_L) during "standard" and "non-standard" compression behaviour.

Figure 3: Typical deformation field of strain in the loading direction (ε_L) and its vertical and horizontal profiles at the $F_{50\%}$ of Norway spruce ($20 \times 20 \times 40 \text{ mm}^3$) during compression parallel to grain

Negative ε_L phenomenon investigated by various methods

"Clip on" extensometer

The movement of the isolated points from each other causing the **negative** ε_L phenomenon can be successfully **detected** by the "clip-on" extensometer (Fig. 5).

The **crosshead** also mechanically tracked isolated points but located on the sample contact surfaces that moved throughout the compression test only relative to each other. The ε_L calculated **by DIC** and used for creating the stress-strain curves are **averaged**, and therefore **cannot capture** the **negative** ε_L phenomenon as well.

Figure 5: Stress-strain curves obtained by crosshead (C), extensometer (E), and DIC

Velocity analysis

The negative ε_L phenomenon was also observable within the **full-field velocity data** of **displacements** in the loading direction.

The **maximum velocity** was observed where samples came into the **contact with** the **movable** compression **plate**. As the distance from that plate increased, the velocity decreased. However, for samples exhibiting **negative** increment of ε_L (Fig. 6), a **higher velocity** of point **no. 3 than** point **no. 2** during the short time interval was proved.

Figure 6: Development of displacement velocity (dV/dt) at selected points located near the compression plates (no. 1,4) and at the vertical position as the points tracked by the extensometers (no. 2,3)

CONCLUSIONS

The negative increment of strain in the loading direction during the **compression** of **Norway spruce** (*Picea abies*, L. Karst) and **European beech** (*Fagus sylvatica*, L.) **parallel to grain** was eplored.

ACKNOWLEDGEMENT

This work was funded by the of Internal Grant Agency of Faculty of Forestry and Wood Technology at Mendel University in Brno (**Grant No. 17/2015**) and by the ESF and the state budget of the Czech Republic, project "The Establishment of an International Research Team for the Development of New Wood-based Materials" **Reg. No. CZ.1.07/2.3.00/20.0269**.

The full-field deformation analysis revealed that the **negative increment of strain** results in an **expansion** of the **middle zone**. The findings can be **helpful for** the identification of weaknesses of standard compression tests, especially in the **choice** of the **sample length** and surface **area for** the deformation **measurement**.

SWST 2015 International Convention, Renewable Materials and the Bio-Economy June 7-12, 2015, Jackson Lake Lodge, Grand Teton National Park, Wyoming, USA