

### Advances in Hardwood Plantation Systems Implications for Bio-energy Feedstock Dr. Jeff Wright

SWST Austin Texas, June 9, 2013













# EU 27 Bio-energy Demand by 2020

- Renewable Energy Directive
  - 20% reduction in GHG from 1990 levels
  - 20% energy efficiency improvements
  - 20% energy from renewable sources
  - 10% increase in biofuels usage

Source: Biorefining Magazine, February 2011.



# Life Cycle Emissions Including Production

| • | Fuel                            | CO2 emissions kg/GJ | CO2 emissions kg/MWh |
|---|---------------------------------|---------------------|----------------------|
| • | Hard coal<br>Oil<br>Natural gas | 134<br>97<br>75     | 484<br>350<br>270    |
| • | Wood chips                      |                     |                      |
| • | @ 25% MC<br>Wood pellets        | 7                   | 25                   |
| • | @10% MC                         | 9                   | 33                   |

Source: Biomass Power & Thermal October 2011



# UK Renewable Energy 2020 Targets

- 20% of energy needs from renewable sources
- 75% of renewables as wind, solar...
- 25% of renewables as biomass
- 50,000,000 dry tonnes biomass total
- 30,000,000 dry tonnes biomass imported
  - 22 million tonnes wood pellets
  - 24-36 wood pellet facilities (1/3 in US South?)
- 20,000,000 dry tonnes biomass-domestic
  - UK Forestry Commission says 2 million tonnes by 2020 in bio-energy forest plantations



#### Wood Bio-energy South Projected Annual Wood Demand 2023 www.forisk.com April, 2013

| • | State | Projects | New Tons*  | Current PW Tons* | Harvest<br>Residues** |
|---|-------|----------|------------|------------------|-----------------------|
| • |       |          |            |                  |                       |
| • | AL    | 8        | 4,947,460  | 22,319,461       | 5,100,000             |
| • | AR    | 7        | 1,820,000  | 8,599,960        |                       |
| • | FL    | 18       | 10,574,125 | 8,810,364        | 4,700,00              |
| • | GA    | 36       | 18,167,578 | 24,910,968       |                       |
| • | LA    | 4        | 3,300,000  | 13,202,538       |                       |
| • | MS    | 8        | 3,183,239  | 9,756,782        | 3,320,000             |
| • | NC    | 13       | 2,796,000  | 6,516,913        | 3,617,000             |
| • | SC    | 11       | 2,939,800  | 11,754,290       | 3,700,000             |
| • | TN    | 6        | 3,150,000  | N/A              |                       |
| • | TX    | 9        | 2,862,440  | 8,828,168        |                       |
| • | VA    | 15       | 2,207,300  | N/A              |                       |
|   | Total | 4.50     | 0.4.40===4 | 40-0040          |                       |
|   | Total | 156      | 64,407,754 | 125,294,759      |                       |

 <sup>\*</sup>Green tons

 <sup>\*\*</sup>Green tons estimated as available by state agency or USFS



#### Post Harvest Residue Gadsen Co. Florida





**Whole Tree Chipped** 

**Conventional Tree Length Harvest** 

Bio-energy Availability = Zero on Many Logged Sites



# Bio-energy Resources (?)









Logging site waste

#### Florida Harvest and Utilization Study, 2008 Resource Bulletin SRS-162



- Average total harvest 68 tons/acre (15 ton/acre residual)
- 331,000 acres harvested (191,000 acres/year clearcut)
- Softwood 85% utilized 15% residual
  - Residual 3.2 million tons (1.0 million tons stem wood, 2.2 million tons tops and limbs)
- Hardwood 74% utilized 26% residual
  - Residual 1.5 million tons (0.7 million tons stem wood, 0.8 million tons tops and limbs)

So 50 MW, 600,000 green tons/year...60% residual recovery...

Requires residuals from 67,000 of the clearcut acres (1/3 of state!)

#### Eastern US Hardwood Forest Plantation Opportunities







#### Cottonwood and Hybrid Poplar



9-year-old Eastern Cottonwood (ECW) on moderately well drained soil in Columbus

### Large *Populus* germplasm collections for deployment in the SE USA

Uses: High quality hardwood pulp & potential for furniture lumber

**Productivity:** *Populus* is the fastest growing eastern USA hardwood—3-20 Gtons/ac/yr in a

pulpwood 10 yr rotation

Site: Eastern USA

**Soils:** Moderately well drained uplands to alluvial

bottomlands—not poorly drained

Site constraints are much greater than for

Sweetgum or pine

Silviculture is well defined

Understanding of resource requirements to grow *Populus* on upland moderately well drain soils could be improved

Resource inputs to establish & grow are high Resource requirements are greater for *Populus* than sweetgum.

# Genetic Improvement (422 varietals total) ArborGen

#### Tests include:

- Wooten Farm, NC Ag. field
  - Age: 2 yrs
  - Spacing: 10' x 4' (87 varietals)
- Eastover, SC Ag. field
  - Age: 4 yrs
  - Spacing: 10' x 4' (243 varietals)
- Moultry, SC Former pine site
  - Age: 3 yrs
  - Spacing: 12' x 7' (161 varietals)
- Floyd, GA Former pine site
  - Age: 8 yrs
  - Spacing: 12' x 8' (120 varietals)
- Randolph, AL (2 tests) Former pine site
  - Age: 3 yrs
  - Spacing: 12' x 7' (162 varietals) & 12' x 4' (124 varietals)



#### Design:

- Randomized Complete Block
- 4 replications at Floyd,
  6 replications at all other sites

# Selected Hybrid Poplar, Eastover SCARBORGEN Age 4.5 years

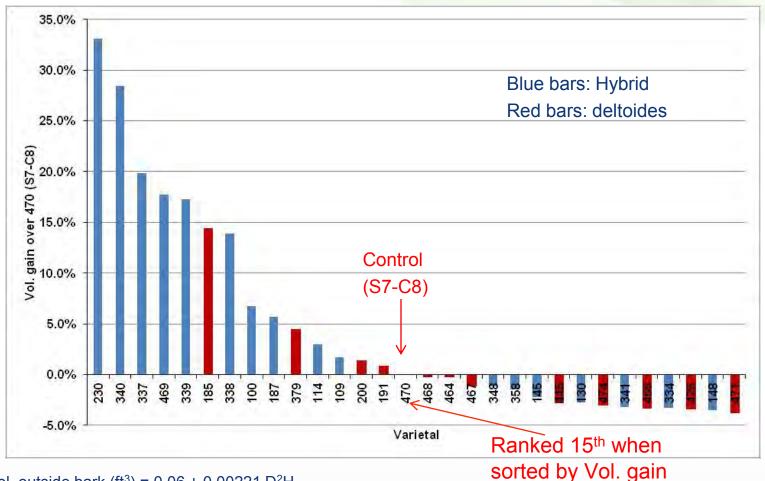




#### Tree Performance (5 sites; 422 varietals total)

#### Average tree height & DBH in six tests (range in parentheses)

| Test            | Age (yrs) | Height (ft)      | DBH (in)      |
|-----------------|-----------|------------------|---------------|
| Wooten Farm, NC | 2         | 14.2 (6.0-18.8)  | 1.4 (0.8-2.1) |
| Eastover, SC    | 4         | 30.0 (12.4-37.7) | 3.1 (0.9-5.2) |
| Moultry, SC     | 3         | 11.9 (5.7-20.5)  | 1.2 (0.2-2.9) |
| Floyd, GA       | 8         | 55.9 (41.2-69.9  | 6.2 (3.5-8.3) |
| Randolph-1, AL  | 3         | 18.0 (13.0-22.9) | 1.9 (1.1-2.5) |
| Randolph-2, AL  | 3         | 17.2 (10.5-25.5) | 1.6 (0.7-2.7) |
|                 |           |                  |               |




4-year-old tree in Moultry, SC test

#### BLUP Analysis - Standardized Volume ArborG



(Top 30 varietals)



Vol. outside bark (ft<sup>3</sup>) =  $0.06 + 0.00221 D^2H$ 

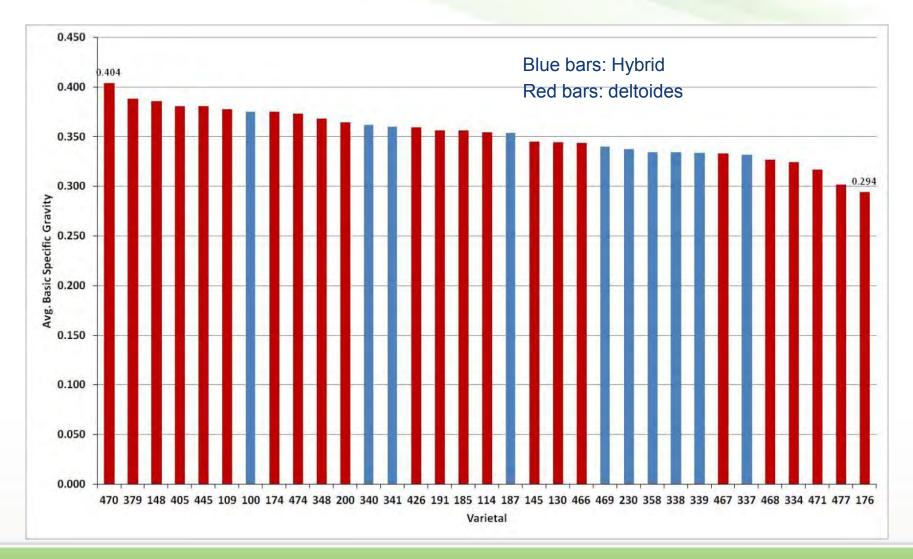
Krinard, RM. 1988. Volume equations for plantation cottonwood trees (*Populus deltoides*). Research Note SO-347, USDA Forest Service

Wood Property: MC & Basic Specific Gravity (after 2012 growing season)

#### • 3 sites

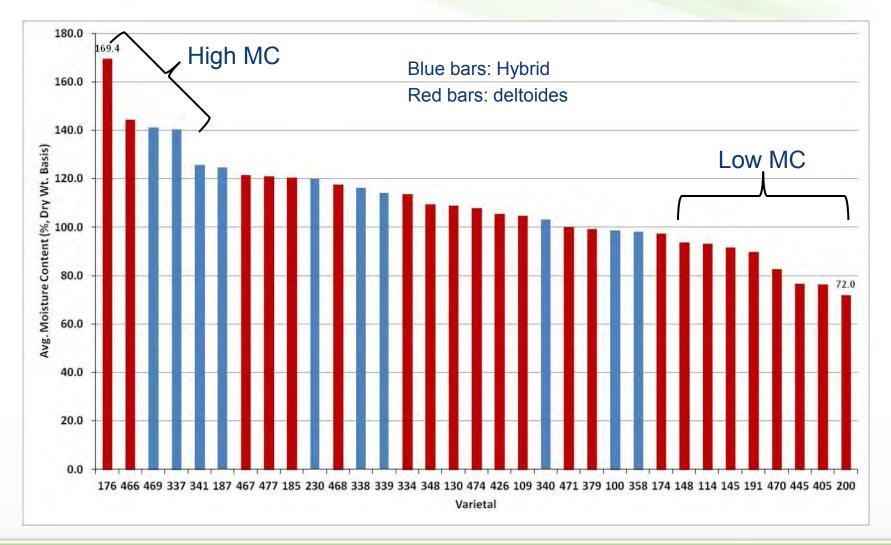
- Randolph, AL (Age: 4 yrs)
- Moultry, SC (Age: 4 yrs)
- Eastover, SC (Age: 5 yrs)

#### Core samples


- Top 30 varietals from BLUP analysis based on volume gain
- 3 trees/variety/site
- 5.1 mm diam. cores extracted in Oct & Nov. 2012
- Core green weight taken in the field as soon as collected
- Core volume estimated using water immersion method
- Cores dried at 101°C until constant weight

ARBORGEN






#### Average Basic Specific Gravity





### Average Moisture Content (%, Dry wt Basis)





#### Sweetgum

#### Large SG germplasm pool In the USA

**Uses:** Hardwood pulp, lumber and

biomass for energy

Species: Liquidambar styraciflua

**Site**: SE USA –Similar to loblolly

**Soils:** Poorly to well drained soils SG is the native hardwood with the

broadest deployment potential in the SE

USA.

Productivity range: 6-10 Gtons/ac/yr

-Silvicultural regimes for establishing and growing SG are well understood and

practical

Improvements: Hybrids with Asian SG

14-year-old Sweetgum plantation Berkeley County, SC—9Gtons/ac/yr



#### L. styracaflua $\times$ L. formosana







# Hybrid Sweetgum Clone- Age Two Years





# Conventional Eucalyptus

•Uses: Mulch, Hardwood Pulp & Biomass for energy

•Species: Eucalyptus benthamii

•Sites: Lower latitudes in the SE USA

•Soils: Somewhat poorly with good internal drainage to well drained soils

•Silviculture: Good understanding but will improve

- Establishment cost > than pine
- Coppice for additional rotations
- •Risk: Freeze damage- Unknown pest
- •Productivity range: 9-16 Gtons/ac/yr pulp wood rotation 7-8 yrs. Specific gravity 0.46 to 0.52
- •Improvement activities: Seed source testing, NCSU FPC screening



#### Eucalyptus benthamii Planting Zones





# Native Eucalypts to Plantations







#### Species Introductions





E. benthamii South Carolina USA Age 6 years



# Eben – age 12 years





### Eben, Age 20 months, near Georgiana AL







#### Eucalyptus benthamii (Eben)

- Most cold tolerant eucalyptus we have tested
- Current planting stock are seed collections from multiple sources which produce good but variable performance
- Large effort in US seed production



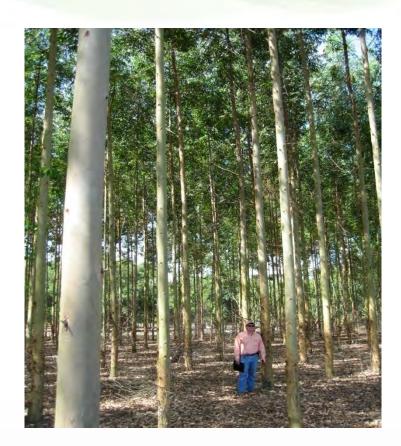
3-yr-old Eben planted near Jackson, AL



#### Eben seed production

#### **Bellamy clonal orchard**










#### Pawns to Clones







## Selected Ecam, Age Two Years







### E. camalduensis, Age three years







#### E. urograndis south Florida

#### **Coppice 3 months**

EH1 at age 12 months







#### E. urograndis South Florida

Age 12 months



#### Age 4 months





#### EH1 Sebring Florida. Age Four Years.



14 dry short tons/acre/year



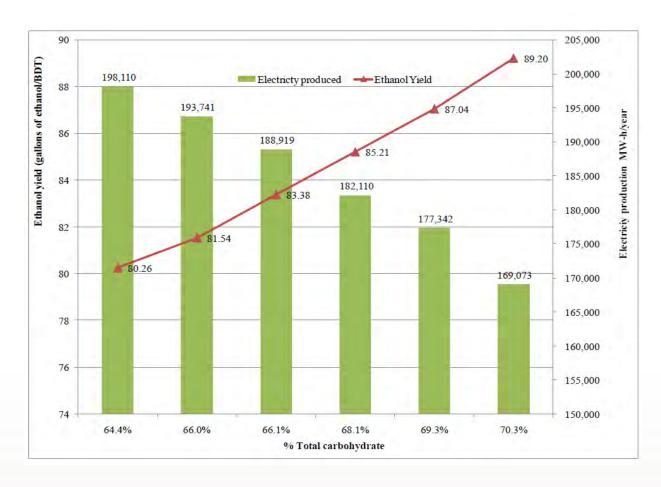


#### Total Yield Sebring FL





### Bio-energy Analysis




Field Crew – Brute Force

**Lab Crew – Intelligent Force** 



### Eucalypt potential for cellulosic ethanol



Gonzalez R, Treasure T, Jameel H, Saloni D, Phillips R, Abt R, and Wright J. Converting Eucalyptus Biomass Into Ethanol: Financial And Sensitivity Analysis In A Co-Current Dilute Acid Process. Part II. Biomass and Bioenergy 2010.

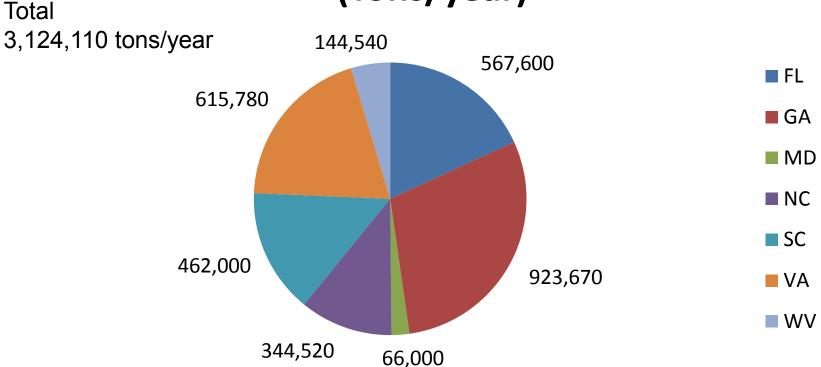
## Eucalypts for solid bio-energy production ArborGE



## Bio-energy such as wood pellets and briquettes can be effectively manufactured from Eucalyptus



PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; DENIG, JOSEPH; SALONI, DANIEL and WRIGHT, JEFF (2012). Assessment of the most adequate pre-treatments and woody biomass sources intended for direct co-firing in the US. BioResources 7(4)4817-4842.


PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; SALONI, DANIEL; WRIGHT, JEFF and DENIG, JOSEPH. (2011). Fuel properties and suitability of *Eucalyptus benthamii* and *Eucalyptus macarthurii* for torrefied wood and pellets. BioResources 7(1):217-235.

PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; SALONI, DANIEL and WRIGHT, JEFF. (2010). Wood pellets: An expanding market opportunity. Biomass Magazine 6:68-75.

## Wood Pellets: NCSU Dr. Daniel Saloni

**July 2012** 

# **Current Production by State (Tons/year)**



Georgia is the largest producer with second fewest pellet plants

39

ARBORGE



# Global Pellet Production and Demand (millions metric tonnes)

|   |               | Demand |      | Production |      |
|---|---------------|--------|------|------------|------|
|   |               | 2010   | 2020 | 2010       | 2020 |
|   |               |        |      |            |      |
| • | EU            | 10.8   | 23.8 | 7.7        | 13.0 |
| • | China         | 0.6    | 10.0 | 0.6        | 10.0 |
| • | Japan/Korea   | 0.2    | 5.5  | 0.1        | 1.1  |
| • | North America | 3.4    | 5.6  | 4.9        | 11.0 |
| • | Total         | 15.0   | 44.9 | 13.3       | 35.1 |

(Pellet Mill Magazine, Fall 2011)



#### Drax Wood Pellet Investments

- Amite BioEnergy in Mississippi
- Morehouse BioEnergy in Louisiana
- Port facility Baton Rouge
- Total pellet production 900,000 tons/year
- Wood demand 1,800,000 green tons/year

#### Woody Biomass Harvest and Transport





Led Zeppelin 1971



#### Stem Size Matters





## Eucalypt Bio-energy Harvest



Plantation age 18 months



## Harvesting Systems – Whole Tree Biomass



Bales at roadside \$9.25/green ton

Whole tree chips at roadside \$10.42/green ton



### Range of Returns for Eucalypt Plantations (1)

| • | Rotation        | Origin   | Cost/acre | Harvest           | Stumpage Prices |       |
|---|-----------------|----------|-----------|-------------------|-----------------|-------|
| • |                 |          | (\$)      | Age               | @ return rate   |       |
| • |                 |          |           | (green tons/acre) | 6%              | 10%   |
| • | 1st             | Seedling | s 525     | 89                | 9.02            | 11.44 |
| • | 2 <sup>nd</sup> | Coppice  | 215       | 102               | 3.42            | 4.24  |
| • | 3 <sup>rd</sup> | Coppice  | 215       | 88                | 3.86            | 4.80  |

• (1) Dougherty, Derek and Wright, Jeff (2012). Silviculture and economic evaluation of eucalypt plantations in the southern US. BioResources 7(2):1994-2001.



#### US South Delivered Wood Fuel Prices

- Wood fuel defined as by product of pulpwood chipping
- Price in Q4 2012 was \$19.36/delivered green ton (1)
- Plantation growing cost (stumpage) \$4-10/green ton
- Cut, chip, haul cost \$14-18/green ton
- Total \$18-28/delivered green ton

(1) Source: Forest2Market December 2012



- —lits all very well having these slightly detached, bourgeois views, but we have to deal with the practicalities. It is my principal responsibility to keep the lights on and if the lights go off, it's no good me saying \_i was for the right reasons'. Biofuels are part of an energy mix that is going to keep the lights on."
- John Hayes, UK Energy Minister
- 8 March 2013

