SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Natural-fibre materials: From Ideas, to Products, to Markets

Prof. Dr. Rupert Wimmer

Institute for Natural Materials Technology

IFA Tulln, Universitaet fuer Bodenkultur Vienna

What you can expect...

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

"A keynote is delivered to set the underlying tone and summarize the core message or most important revelation of the event."

My **personal view** on developments, based on my professional experiences in academia and industry

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Ideas.....

How is innovation happening?

BOKU

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

TULLN

Starting point for each innovation is either a *technology push* or an existing *market pull*.

Classical innovation chain

Company's R&D activities are utilizing results from basic and applied research

Integrated "Key-Technology" Concept

Future fields for innovations

University of Natural Resources and Life Sciences, Vienna

Automotive industry, -supplier	Maschining, Processing
 Aktive Sicherheit, aktive Lichtsysteme und Fahrerassistenzsysteme Neue Antriebstechnologien, Verbrauchs- und Emissionsreduktion <u>Elektrik/Elektronik</u> <u>Light weight, new materials</u> Neue Fertigungstechnologien 	 Neue Fertigungstechnologien Elektrik. Elektronik und Automatisierungstechnik New materials Wirkungsgradsteigerung, neue Energiequellen, Emissions- und Verbrauchsreduktion Mikro- und Nanotechnologie
Constructive engineering, buildings	Chemical industry, raw materials
 Verbesserte Bedienung und Komfort Neue Energiequellen, Emissions- und Verbrauchsreduktion New process technology New Materials Systemiosungen 	 Biotechnologische Herstellverfahren New surface applications Direktverfahren und Anlagenautomation Functional Cellulose Fibers Nanotechnology

Based on 300 industry expert views from Germany and Austria

Quelle: Arthur D. Little Innovation Excellence Studie 2004

LT = Low Tech HT = High Tech LA = Low Added Value HA = High Added Value (©R.Kessler) SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas disc DC SXX.82 evenue web at 32s corredisc DC SXX.82 evenue web at 32s corr

Universitaet fuer Bodenkultur Vienna

iiii

IFA Tulln – Department for Agrobiotechnology

illi itter

111

140

Ideas

ALTER

Ideas

TULLN

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

A key idea: The FASAL material

Faser (Fiber)

- Zerealien (Cerials)
- Extrusion

FASAL = wood + starch + resins

Ideas

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Wood particles Corn Natural resins Biol. Additives Injection molding FASALinjection molding

SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

Fasal and Fasalex

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

1987 First extruder

History

- 1989 "Fasalex" first application for patent
- 1990 Extrudable particle board
- 1991 "Styropor", mold, gypsum patent, "Ökopur"
- 1993 Injection molding started, Fasal
- 1996 Natwood (solid wood modification)
- 2001 Prosin (protein and resin)
- 2009 biopolymer processing (PLA, PHB)
- 2010 Paper-Plastic-Composites (PPC)
- 2012 Sustainable biomaterials group

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

to products.....

through process and product design

Product Functionality Design through process optimization *and p*roduct design

Products

"Re"- Design criteria

- Renew/Redesign
- Reduce
- Reuse / Recycle
- Remove
- Renewable
- Resize

- Functionalities
- Raw material management
- Biodegradeable
- Product safety
- Environmental friendly
- Energy efficient

Product and Process Design

- Product Functionality
 - Low weight (not really new)
 - Low emissions ("better air" products / panels)
 - mold resistance (non toxic)
 - Electrically / thermally conducting
 - •••••
- Process Development & Design
 - Expensive processes little knowledge
 - Advanced sensor technology
 - Process modeling

Sensor technology - Experimental Design

Products

PCA – species mixture for hardboards

based on DOE (Design of Experiment)

(Wimmer et al.)

SWST Convention - Sunday, June 9, 2013, AT&T Conferenc

...different natural fibers used

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

wood, coir, hemp, flax, sisal, straw, reed, bamboo, rice husks, bagasse

....and polymer matrices

Extrusion technology

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

Conical co-rotating NCT 55 extruder

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Profile extrusion

Injection molding technology

Products

Non-Woven

entan

glement

Products

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Air-lay spike system for fibre fleeces

Expert knowledge in processing

Wet-laid processing

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Printing wood its possible!

The new type of "Wood-Polymer-Composite"?

Even with treering- like structures

Improving composite performance

BCKU

Alkaline treatment

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Envision Release Plan Product developments ... Design Test Develop

SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

(examples)

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Some still on the market!

1995 – product examples

Foamed bio-materials (protein-based, wood)

Products

1991

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Breakthrough still anticipated !

Product examples

Fasal 465

- PS, wood, corn
 Tensile strength [MPa] 24,3
 Flexure strength [MPa] 47,4
 Swelling [%] 1,2
 Impact pending [kJ/m²] 6,1
 Tensile stretch [%] 0,65
 Density [g/cm³] 1,23
- Paintable, polishable

Fasal-Prosin 293/6

- PP, wood, proteins and natural resins
- Tensile strength [MPa] 26,6
- Flexural strength [MPa 49,6
- Swelling [%] 0,2
- Impact pending [kJ/m²] 3,49
- Tensile stretch [%] 0,90
- Density [g/cm³] 1,19
- Not paintable, dye

Product examples

Fasal 621/1

- PP, wood, corn, natural resins
- Tensile strength [MPa] 19,4
- Flexural strength [MPa]
- Swelling [%]
- Impact pending [kJ/m²]
 6,05
- Tensile stretch [%] 1,5
- Density [g/cm³] 1,14
- Not paintable, dye

Fasal-Prosin 293/17

- Biopolymer, wood, protein, natural resins
- Tensile strength[MPa] 11,9
- Flexural strength [MPa] 19,3
- Swelling [%]
 0,9
- Impact pending [kJ/m²]
 9,92
- Tensile stretch [%] 3,28
- Density [g/cm³] 1,33
- paintable, dye biodeteriable

Products

l **Resources** ienna iotechnology

34,9

0,0

Materials from Wastes / residual products

9 billion tons of domestic waste / a worldwide plus industrial waste....

What to do with all the rubbish ?

Why not making products out of it?

different waste paper types

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

De-Inking Paper Sludge Extruded Products

~ 70 % inorganic ~25% cellulose

Innovative materials from waste

- Beverage Cardboard
- Cardboard
- Kraft paper
- Leaflet paper
- Poster paper
- Wallpaper
- Yoghurt Beaker
- Laminated paper
- De-Inking paper slud

Wallpaper-based profiles

SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

Poster paper-based profiles

- Wallpaper-based profiles
- Beverage-cardboards (tetrapak)
- Yoghurt-beaker waste materials

Mechanical properties

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Composites with PP as a matrix (50%)

	Wood	Poster paper	Tetra Pak	
Flexural strength	45	24	35	[MPa]
Flexural E-modulus	3820	1810	2240	[MPa]
Impact strength	5,6	8	13	[kJ/m²]
Water absorption after 24h	1,5	2,2	1,6	[%]
Water boiling test 2h	3,4	2,6	2,3	[%]

Foamed Products

Products

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Foamed Granules Die-diameter 2 - 3 mm

Extruder CM 45 Food

Foamed Products – natural materials and waste

Products

Non-Woven based wood-fiber materials

Today: Up to 15 kg NFRC / car

Non-Woven based wood-fiber materials

Cargo area panels for trailers

University of Natural Resources

Products

and Life Sciences, Vienna epartment for Agrobiotechnology

wood / annual plant non-woven resin-impregnated panel

SWST Convention - Sunday, June 9, 2013, AT&T Conference Center, Austin, Texas

46

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

and markets.....

FASAL: Why competitive ?

- extrudable / injectable wood
- wood-like haptic and look
- properties similiar to wood
- renewable
- Iow quality wood used
- no /low waste
- alternative materials (hemp, flax, straw...)
- high strength, MOE; good hardness, density
- Iow swelling
- easy to color, paintable, polishable
- glueable withough further treatment

FASAL – why competitive? (cont.)

shape stability at higher temperature, no softening diversity of Natural Resources, Vienna

Department for Agrobiotechnology

- Ittle thermal shrinkage, no excess pressure needed
- good acoustic properties
- Iow flammable (class B2)
- no splintering
- biodeterable
- quick loss of integrity with water
- recycible (up to 20% added to virgin material)
- Iow cost:

> Fasal: € 1,05-2,00/kg
> Fasalex: € 0,59-0,67/kg

patented

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

An Inventer can be enthusiastic.....

Musical instruments

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Furniture parts

20.06.2013

babel

Toys

Toys...growing market for bio-based materials

stuck ab 7.30 Uhr kfast from 7.30 a

Organic cottor plastic – here e

MATERIAL

Furniture-Inserts

6

Problem: WPC after 3 years outdoor exposure

Photo taken at "Huber Holz" 2008

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Finding more durable WPC

Wood

Natural

Lignin & resin in the matrix

- \rightarrow thermal instable
- \rightarrow brittleness by resin
- \rightarrow silicate causes abrasion

 \rightarrow greying

Paper

Chemical treated

Nearly no lignin and resin

- → higher processing temperature
- → flexible adjustment of properties
- → higher lifetime at processing units

→UV - stable

paper waste (label paper)

Wood particles

Research project 2005 - 2009 UPM-Kymmene Cooperation, FI

Market

University of Natural Resources and Life Sciences, Vienna Department for Agrobiotechnology

Product now on the market: UPM ProFi Deck

using label-paper from industrial processes, non-recycable paper is converted to a high-value product !

Deckings

Fair in Milano

Based on R&D results...a company invests (BIKU)

Consequences on "wood" education

- Classical wood science & technology education is not enough
- To meet future innvation and market demands, competences are needed in:
 - Polymer Chemistry
 - Knowledge on biopolymers, plant-based chemicals, extractives, resins, additives
 - Polymer Engineering and Processing
 - Non-woven technology

Core messages from this keynote

What is needed ?

- In Research: bio-inspired materials / bionics, nano (?),
 fiber and matrix modification, wood-refinery.
- <u>Technology</u>: Knowledge-based production, newly developed or adopted technologies, new products with new materials or/and new processes.
- Education: new teaching profiles and contents.

Thank you for your attention !!

Like to acknowledge.

Norbert Mundigle Eva Sykacek, Josef Hintenberger, Hannes Frech, Wolfgang, Schlager, Thorsten Bätge, Christian Weichhart Andrea Ganz, Rudolf Kessler