SWST 2012, Beijing

Mechanical Properties of the Chemically Modified Wood

26 Hexing Road, Harbin, 150040

Yanjun Xie Qiliang Fu Qingwen Wang

August 27-31, 2012 Northeast Forestry University

- Introduction: Why modify the wood? Why concern about mechanical properties?
- Review the current modification techniques and effects on the mechanical properties of wood
- Summary

Introduction: why modify wood?

- Hygroscopic
- Dimensional deformation
- Develop cracks
- Weathering and fungal decay
- Insect and borer damage

Chemical modification is an alternative strategy for wood protection !

Dr. Roger

Dr. Roger Rowell (FPL, US)

Target of chemical modification

- Dimensional stability: ASE, Bulking
- Durability: white-, brown-, and soft-rot
- Resistance against weathering deterioration
- Resistance against insect…

Mechanical properties? Mechanical properties is crucial for wood as a construction material!

1. Heat treatment

Using different shield media:

- Water vapour: Low cost, controllable, easy operation; but hydrolysis and oxidation, dark colour, Severe reduction in mechanical properties.
- Natural oil (caster oil): good thermal conductivity, cutting off air, but difficult to coat, high cost.
- Inert gas (nitrogen): extinguish oxidation, costly, difficult operation.

Rapp and sailer, 2002

Heat treated wood

Load-deflection curves of beech specimens (a) untreated and (b) treated at 220 °C for 4 h. (Adapted from Arnold 2010).

Less tough, lower fractural force

Heat treated wood

Effect of **temperature** and **shield media** on the impact bending strength of wood. (Adapted from Rapp and Sailer 2000).

Reduction in impact strength

Heat treated wood

Wood species	Media	Temperature /duration (°C/h)	Moisture content at 20° C, 65% r.h. (%)		Change in mechanical properties based on untreated controls (%)			Df
			untreated	treated -	Static bending		Impact	Keterences
					MOE	MOR	bending	
Pine	steem	210/6	12.6	4.5	-40	-5		Esteves 2007
Eucalypt	steam		10.5	2.8	-50	-15		
Pine	N.A. * 4 /NT	Two stage treatment				-3		Tjeerdsma 1998
Beech	MOISU/N ₂					-20		
Pine	linseed oil	220/4.5			NC	-30	-49	Rapp 2000
Beech	C 110	220/4	11.3	4.9	11 -26 10 -19		A	
Spruce	Gas exclude O_2		12.2	5.3		-19		Ariiola 2010
Softwood		212/-	13.5	6		-15		Mayes 2002
Hardwood		200/-	10.5	6		-20		
Birch	Humid inert gas (N ₂ +CO ₂)	230/-			-7	-43		Poncsák 2006
Pine	air	180/10			-32	-33	-42	Korkut 2008
Spruce		212/3			-14	-49		
Aspen		212/3		2-3	+15	-35		Shi 2007
Birch		200/3			+30	+6		

Great reduction in both the static and impact bending properties

2. Acetylation

Grafting acetic anhydride onto cell wall polymers, in the absence of water

- Better dimensional stability
- More durable
- Slightly change colour
- Smell odorously due to presence of acetic acid
 - Increase in hardness

www.titanwood.com

Acetylated wood

	Wood species	WPG (%)	Moisture content at 20° C, 65% r.h. (%)		Change in mechanical properties based on				- Doforonoog
Treatment					untreated controls (%)				
			untraatad	treated	Static bending		Impact	Tensile	References
			unticateu		MOE	MOR	bending	strength	
AA	Pine	19.1 23.3	9.8	4.1 2.8	-17.0	-5.3			Larsson 1994
	Spruce		12.0		+3.5	+7.4			
PA	Acacia mangium				+1.0	+2.1		+8.2	
	Acacia hybrid				+3.6	+9.0		+10.0	Phot 2010
SA	Acacia mangium				+11.5	+5.5		+6.6	Bhat 2010
	Acacia hybrid				+7.1	+2.8		+6.7	
AA, 125-130 °C	Southern yellow pine	18.0					-13.3		Goldstein 1961
	Ponderosa pine						+15.6		
	Ponderosa pine	20.7	9.1	4.0	+2.0	+10.9	+17.5		
AA, 125-130 ° C	Red oak	21.2	8.4	4.6	-5.8	-8.3 -6.9		Dreher 1964	
125-150 C	Sugar maple	21.4	9.2	3.4	-4.3	-8.1	-1.4		
AA, $MgCl_2$	Sugi	25			-2%	-1.5%			Li 2009
AA	Sitka spruce	Up to 30	9.5	8.5-3.0	(-20)-(+10)	(-20)-(+30)			Minato 2003
AA		20					+1		Epmeier 2003
AA	Radiata pine		13.1	5.2	-9.1	-9.3			Jorissen 2005

Note: '--': unknown, 'AA': acetic anhydride, 'PA': propionic anhydride, 'SA': succinic anhydride

Almost NOT change the bending, tensile, and impact properties

3. Methylolation of wood

- Dimensional stability
- Durability
- Reduced rate of moisture sorption and water uptake

Dimethylol dihydroxy ethyleneurea (DMDHEU) Crosslinking cell wall polymers/condensation, in the presence of water

Retention of tensile strength (a) and increase of compression strength (b) of wood modified with various concentrations of DMDHEU. (Adapted from Bollmus et al. 2010.)

Reduction in tensile strength Increase in compression strength

Retention of MOR in bending (a) and impact strength (b) of wood modified with various concentrations of DMDHEU. (Adapted from Bollmus et al. 2010).

No change in MOR Reduction in impact strength

Jagged breakage line

Impact fractural wood untreated (a) and treated with 0.4 (b), 1.2 (c), and 2.0 mol I^{-1} DMDHEU.

SEM graphs of fractured cross sections of latewood untreated (a) and treated with DMDHEU to 28% WPG (b). Untreated: microfibril bundles are pulled out and treated: regular fracture surface.

4. Formaldehyde-based resins

Improvement of MOR (a) and MOE (b) of wood treated with urea formaldehyde (UF), melamine-formaldehyde (MF), and phenol formaldehyde (PF) to different WPGs, respectively. (Data adapted from Deka et al. 2002).

 \rightarrow Increase in MOE and MOR with the WPG

5. Modification with furfuryl alcohol

- Improved dimensional stability
- Improved Durability
- Dark surface
- Uneven for large timber

 $CH_2 - OH$

Furfurylated wood

Retention of impact strength of Scots pine wood treated with furfuryl alcohol to various weight percent gains. (Data adapted from Westin et al. 2003).

Decrease in impact strength with increasing the WPG

6. Grafting with vinyl monomers

Micrograph of cross-section of poplar wood treated with methylmethacrylate. (a) 200x and (b) 2000x.

Hostly exist in cell lumens and lack of interfacial bonding

Grafting with vinyl monomers

Improvement in the mechanical properties of sugar maple wood treated with a vinyl-type monomers to WPG of approximately 50%. Legends: MOE, modulus of elasticity; MOR, modulus of rupture; FTR, force to rupture. (Data adapted from Schneider et al. 1990).

 \Rightarrow Improve the mechanical strength

Summary

- Heat treatments cause a general reduction in the mechanical properties, but highly depending on temperature, time, and shield media.
- Modification by incorporating chemicals in wood structures forming stiff crosslinking network will reduce the dynamic strength such as impact strength. Hydrolysis of cell wall polymers is the other reason for such reduction.
- Incorporation of chemicals will increase the surface hardness and compression strength.
- Changes in mechanical properties are associated with wood species mostly due to their different solution permeability.

There may be a limitation to use most chemically modified wood as **load-bearing elements**.

Ice Lanterns

snow carving

Thanks for your attention! Welcome to visit Harbin!

26 Hexing Road, Harbin, 150040