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Is carbon the change agent of the century?

• Carbon is the sustainability metric of our 
time characterized more by myth than fact.

• Understanding carbon will be critical to 
effective mitigation policy

• Carbon is not a toxin you can bottle and hide
-every living thing and every manufacturing 

process modifies carbon
-there are millions of linked carbon pools
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Carbon Sequestration ‘in, or by using’ Forests?

The CORRIM  Research Based Carbon Story

• Options: store carbon in the forest or 
sustainably pump it into buildings and 
substitutes for fossil intensive materials

• What we know 
• What we don’t know
• What’s not working 
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Biofuel use



Life Cycle Inventory Analysis
‘cradle to grave”

System Boundary

Useful life of house



• US EISA 2007 sets GHG thresholds for biofuels 
requiring LCA – a Congressional mandate

Congress’s $.51/gal ethanol tax credit
- Takes 5 gal corn-ethanol to displace CO2 of 1 gal 

gasoline 

$2.60/19lbs CO2 or $295/mtCO2  (metric-ton)

CCX: $2,  ECX: $13,  Congress: $295 /mt   

 $244 billion/yr to offset gasoline from imported oil

While stealing feedstocks from carbon saving uses 



Phase1&2: 4 Forest Supply Regions, 9 
Products, and  4 Construction Sites

Minneapolis House
Cold Climate

Atlanta House 
Warm Climate

Seattle Res&Non-Res 
Wet with Seismic Codes

S. Cal. Res&Non-Res 
Dry with Seismic Codes



Could be biofuel

Some resin 
feedstock

More resin

BC Interior

BC Coast

US Ave
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Life Cycle Assessment (LCA) In 
Terms of Performance Indices
• Embodied & Fossil Energy
• Global Warming Potential (GHG)
• Air Emissions
• Water Emissions
• Solid Waste
• Ecosystem Impacts

CORRIM
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Houses Designed to Local Code:
LCA comparisons

Minneapolis House 
Cold Climate

Atlanta House 
Warm Climate

Wood vs. steel framed house 
designed to same R code.
Concrete basement, sheetrock, insulation, 
wood trusses, vinyl windows, vinyl siding 
and asphalt roofing.

Wood framed vs. concrete 
block exterior walls designed 
to same R code.
Slab on grade, sheetrock, insulation, wood 
trusses, vinyl windows, stucco/vinyl siding 
and asphalt roofing.
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Summary Performance Indices
Life Cycle Assessment (LCA)  for 

Minneapolis House
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Summary Performance Indices:
Life Cycle Assessment (LCA)  for 

Atlanta House
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With Carbon in Products

Steel vs Wood 
Frame:
Minneapolis 
code

Concrete vs Wood 
Frame:
Atlanta code
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Lumber Lumber

Concrete

Steel
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I-joist uses ½ the fiber of a dimension joist:
-reduced profile & stiffer
-cut to length with less waste
-underutilized species 
-doubling resource use efficiency
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Wood I joists Dimension Lumber 



Many Alternatives Can Improve 
Performance: 

materials, product development, design, process
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More Direct Substitution
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LCA driven opportunities



No limits on potential 
design: even from 
reclaimed wood



Burning wood for energy permanently 
displaces fossil fuel carbon emissions: 
as important as storing carbon

Displacing Carbon Emissions 



Substituting wood for energy intensive 
materials can be more effective

Displacing Carbon Emissions 



Linking all product life cycle pools to the 
forest: tracking carbon from forests to uses
 LCI provides a cross section of every 

stage of processing at a point in time

Tracking carbon pools over time: 
attach each current process to 
their time event (current processes, not predicted 
technology change)

Simulate forest carbon with growth models 
linked to product & substitution impacts



DELAY

2049

THIN, 
LATER

RETENTION

THIN

1999

2009

RETENTION

Silvicultural Pathways 
are Designed and 
Simulated using the 
Landscape Mgt. 
System (LMS) NO

ACTION



Carbon Pools from Sustainable Forest Mngt. 

Average across each rotation: easier to digest
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Load of forest residuals and hauling to biomass facility

Residuals piles at processing yard

Residuals for Biofuel

Ground Slash Feedstock =     
50% of merch logs
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 Forest + Product pools demonstrate sustainable trend although falling below 
initial forest carbon as short lived pools decompose

 Long-lived product pool increases with each rotation with longer house life



 Substitution at first harvest more than offsets dead wood & 
short lived product carbon losses

Forintek commissioned substitution meta-analysis: 
Csubstitution to Cwood used 2:1
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Carbon Pools across State & Private Inland West 
(per hectare average)



If increased Forest Service thinnings were 
fast enough to avoid fire

42
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Landscape Carbon:  National Forests -  assuming no harvest, fire or disturbance
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Landscape Carbon:  National Forests in Eastern Washington
-  assuming fire at 1.7%/year and no salvage harvest
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Landscape Carbon:  National Forests in Eastern Washington
-  assuming fire at 1.7%/year and no salvage harvest
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Biofuel use provides a major new opportunity

Remove residuals & thinnings to reduce fire and 
insect risk

Capturing the product and displacement carbon 
rather than burning forest residuals & wildfire

Improves forest resiliency to climate change

Need scale volumes inclusive of federal thinnings for 
scale investments in regional ethanol processing

Thinnings avoid the future social costs of “no-
management”

cost of fighting fires, fatalities, facility losses, 
restoration costs, water lost, timber and habitat lost, 
community impacts of smoke, carbon lost
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Uses of Life Cycle Carbon accounting
- track carbon across multiple carbon pools -

• Policy based on single carbon pools will likely be 
counterproductive.

• Incentives to deliver more carbon faster will increase 
carbon in all pools (although producing less old forest 
habitat). 

• Credits for builders to displace fossil intensive 
products. Given the high leverage from substitution, 
builders have the greatest opportunity to reduce 
emissions

- And bid the savings back through the resource supply chain 
motivating increased investments to reduce emissions. 



Uses of Life Cycle Carbon accounting

• Incentives to remove forest residuals to 
increase biofuels can be productive; 
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- Not if the incentive diverts wood 
feedstocks from higher valued uses like 
fiberboards that substitute for fossil 
intensive products.

- Incentives for the end product ethanol will 
steal feedstock before collecting residuals  



• Arbitrary rules such as requiring permanency in the 
product to 100 years ignore life cycle assessments 
o Wood uses from the acre are better than permanent, 

growing sustainably

• Incentives that recognize the losses in carbon from 
fires and the costs of fighting fires would encourage 
below cost thinnings to reduce fire & insect risk. 
o Reducing carbon emissions from fires also increases, 

feedstocks for biofuels & substitution
o Improves forest resiliency to climate change but we need 

more site-specific (by forest type) research on how much to 
thin.
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Some Conclusions
• Fossil energy is too cheap and will out-compete wood markets 

in every downturn until the fossil fuel cost structure is 
increased.

• We have a long way to go to get the rules consistent with good 
science so they are not counterproductive.

• Incentives can too easily be counterproductive

– Incentives for ethanol will bid away existing feedstocks before they pay 
for the increased cost to collect forest residuals and thinnings

– Incentives for small scale production like renewal energy standards 
(targets) will proliferate small scale incremental uses of biofuels 
preempting the supply needed for scale ethanol plants

– Incentives for forest carbon will delay harvest & increase fossil fuels use.

– Be careful what you ask for?



Impact of Higher Fossil Fuel/Carbon Prices
- an optimistic future -

Pay to collect forest residuals & waste

Pay to use more wood in construction or 
other fossil substitutes (furniture etc.)
• Where the carbon displacement leverage is highest

Use more biofuels (but solid wood prices must rise 
more than biofuel feedstock to avoid counter productive 
result)

Pay to grow it faster & use it sooner,  not 
grow it longer



What we don’t yet know

• Product substitution parameters
• Structural change over time

– losing share for decades
– where less direct vs more (higher leverage)

• Elasticities of substitution
• Furniture, cabinets, trim, hybrids
• Other uses of mill residuals: paper, plastic 

composites 
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• Recycling (especially for more than energy) 

• Environmental product development



What we don’t yet know
• Biofuel feedstock & processing LCIs

• A current Phase I project & Phase II proposals 
– Many different collection settings: regional differentiation
– Many processing alternatives limited to process models
– Policy conflicts & unintended consequences
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• Science informed strategy needed
• Value added market/incentive conflicts 



What’s not working

• Building & Regulatory Standards not
consistent with LCA
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• Education: university, CE, policy, public, 
even scientists & the choir
(education without political advocacy?)

• Environmental product development

• A more strategic response, from whom?



The “forest woodlot”: carbon storage
or a pump to stores? 

• If your back yard wood-lot is left to grow, once it reaches its 
carrying capacity it no longer takes carbon out of the air.

• If you cut the dying wood each year to burn in your stove, you 
can sustainably (forever) avoid freezing while displacing the 
emissions from energy alternatives you would otherwise need. 

• If you cut the wood before the tree growth slows down you may 
have enough for your neighbor as well,

• Or use that wood to build your growing family’s next house 
displacing even more emissions from the fossil intensive 
products you will not need, and for their family’s after that. 

• With more good wood lots pumping carbon you can serve a big 
part of the nation’s housing & energy need, reducing carbon 
emissions. 
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The Details

CORRIM:  www.CORRIM.ORG

Athena: www.athenaSMI.ca

LMS:  http://LMS.cfr.washington.edu

USLCI database:  www.nrel.gov/lci
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Carbon Pools from Sustainable Forest Management
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Forest, Product, Emissions, Displacement & Substitution Carbon by Component
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Carbon from Forest & Biofuel Displacement of Coal (not reviewed)



All carbon pools with sustainable forest 

management

Forest 
Pools

Products
Dead wood

Carbon in forest increases 

 Starting with net merchantable volume from current inventory 
and projecting average future expected yields generates a 
positive trend in forest, product, and substitution pools.
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