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Abstract 

 
For economical and environmental reasons we are interested in diminishing the weight of 
flooring strips. One way to achieve this is to use the number and shape of grooves 
underneath the strip. Using warping as a comparative tool, we could analyze the merit of 
a finite number of designs. However, with this approach we cannot guarantee that the 
result is the most favourable. The search for the ``best design'' leads to design 
optimization: minimizing the weight by acting upon a part of is shape taking into account 
its warping or stiffness. 
 
We present an optimization strategy adapted to the calculation of the optimal design 
subjected to arbitrary mechanical and geometrical conditions (for the flooring strip we 
have a condition on the thickness of the wear layer).  This approach is not limited to 
flooring strip and can be used in any situation where a linear hygromechanical model is 
relevant.  This strategy is composed of two steps: global optimization with respect to 
admissible variations of the shape (or design) followed by a post-processing phase taking 
into account various other mechanical and possibly geometrical conditions imposed on 
the strip.  
 
Keywords: design optimization, finite element method, weight, stiffness, moisture 
content, linear elasticity 
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Introduction 
 
For economical and environmental reasons we are interested in diminishing the weight of 
parts made of wood or wood fibre composites, in particular flooring strip. A reduction in 
weight will lead to a better use of the resources and improved shipping. The analysis of 
various design of parts made of any material driven by hygrometric (and possibly 
thermal) conditions can be a difficult and time-consuming task. In that context the 
development of a simulation tool allowing a reduction in the research cycle is interesting. 
 
Variations of hygrometric conditions can induce undesirable hygromechanical 
deformations. For appearance products such as parquet, even a small deformation of the 
material is unacceptable. Adsorption and desorption of water vapour may induce 
cupping, and consequently decrease product value. In this context, it is of primary 
importance to reduce warping due to variations of the thermo-hygrometric conditions. 
Using the warping as a comparative tool, we could analyze the merit of a finite (discrete) 
number of designs relative to some hygrometric variations. But we are interested in 
avoiding the subjectivity of the discrete design optimization. With the objective of 
developing a systematic and unbiased way of lowering the weight while maintaining 
acceptable dimensional stability comes the incentive to optimize their design.  
 
The hygromechanical analysis follows Deteix (2008). The numerical model relies on the 
three-dimensional finite element approximation of the solution of the hygromechanical 
model. For the shape optimization part, first we devised a strategy (loosely inspired by 
Mins (1999)) allowing us to place this structural optimization problem with transient 
loading in the context of classical shape optimization (Bendsøe and Sigmund (2002), 
Delfour and Zolésio (2001)). The numerical approach is based on the SIMP method 
(Solid Isotropic Microstructure with Penalization) as presented in Bendsøe (2002). We 
used the heuristic approach of Sigmund (1997) for the filtering of the checkerboard effect 
(numerical artefact produced by certain choice of degree of interpolation of the 
displacements) and making the design independent of the finite element grid.  
 

Hygromechanical Model 
 
We want to describe the mechanical behaviour of a wood or wood composite part 

3Ω⊂ � , subjected to mass transfer (moisture movement). We consider that we have 
isothermal conditions and a variation of the hygrometric conditions. The mass transfer 
occurs by free convection from the surfaces. The transient moisture movement is 
described by the three-dimensional moisture conservation equation.  
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where KM: tensor of effective water conductivity (kg m-1 s-1 %-1); D: tensor of effective 
moisture diffusion (m2 s-1) ; db : basal density (kg m-3) and M: moisture content (%).  
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The wood is orthotropic and elastic (satisfying Hooke’s law). No mechano-sorptive 
effects are taken into account (Blanchet et al. 2003). Since we consider that the material 
is conditioned, the flooring strip is initially free of stress. The governing equation for the 
description of the mechanical aspect of the problem is the three-dimensional (incremental 
quasi-static state) equation of equilibrium:  
 

 0 ( )ij
ij ijkl kl kl

j

C M
x
σ

σ ε β
∂

= = − Δ
∂

 (2) 

 
where body forces are assumed to be negligible. σij are the normal and shear stress 
components, expressed in a rectangular coordinate system, Cijkl: stiffness tensor; εkl: 
strain tensor; βkl: moisture shrinkage/swelling coefficients (%-1); ΔM: moisture content 
change between two time steps (%). The stiffness tensor is constant (in time, no ageing) 
and we take into account hysteresis in adsorption/desorption for the shrinking/swelling 
coefficients (Goulet-Fortin 1975). The strains are related to the displacements, 1u , 2u and 

3u  measured along the 1x , 2x and 3x  directions, respectively. 
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Shape Optimization under Transient Conditions 
 
The mechanical behaviour of a flooring strip (or of any wood or wood composite part) is 
transient. The search of an optimal design (we will use, without distinction, the terms 
shape, design or geometry to describe the complete definition of the geometry of the part 
under study.) should take into account this transitory nature. This implies to set up an 
optimization process to establish the most favourable design (shape) in relation to weight 
reduction and suitable stiffness over a fixed period of time [0, tmax]. We propose an 
approach, inspired by Min et al (1999) which is mathematically sound and easy to 
implement. This approach, called Transient Shape Optimization Analysis (TSOA) 
consists in determining the optimal shape at a fixed time (critical time) followed by the 
verification of a set of mechanical criteria on the design for the whole period. When the 
criteria are satisfied, we consider our design optimal and in case of failure the process is 
restarted using the current shape and the time at which failure of the criteria occurred as 
the new critical time (Figure 1) 
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Figure 1 The TSOA paradigm, an optimization process for transient behaviour/cost 
function. 

 
Shape Optimization of the Unsteady Strain Energy 
 
Recall that we have denoted by Ω the domain of 3� occupied by the part. This domain 
will be included in maximal domain MaxΩ  and composed of two components FΩ  and GΩ  
 
           Max

F G F G G GΩ = Ω Ω Ω Ω =∅ ∅ ≠ Ω ⊆ΩU I  (4) 
 
where FΩ is a fixed component (possibly empty) and GΩ is the zone where variation of 
the geometry is permitted and contained in a larger and fixed research region Max

GΩ  
(Figure 2).  
 

 
Figure 2 Two-dimensional example of the geometrical decomposition. On the left the 
maximal domain (known as the hold-all). On the right, an example of possible design 
included in the hold-all with a variation of the geometry contained in the modifiable 
zone. 

For FΩ and Max
GΩ given, we define the set of admissible shapes adΠ  as the set of domains 

satisfying Equation (4). 
 
 { }3 3, , ,   satisfy (5) Max Max

F G G adΩ Ω ⊂ Ω ≠∅ Π = Θ ⊂ Θ� �  (5) 

 Max
ad
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F G∀ Π Ω⊆Ω Ω =Ω∈ ΩU  (6) 

 
We are looking for an admissible optimal shape, the optimization process is restricted to 

adΠ . The weight is taken at moisture content refM and is a function of the basal density 
(FPL 1999 ): 
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We use the strain energy ( , )S t Ω as a global indication of warping. The displacements are 
fixed only on a finite number of points and we have: 
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where Nf  is the load applied on NΓ , a part of the boundary.  
 
We chose to minimize the displacements (via the compliance (Eq. (8))) while imposing a 
restriction on the weight. This approach is classical, it is the usual approach presented in 
the literature (Delfour (2001), Bendsøe (2002)). A priori, it is easier to fix a goal on the 
reduction of weight and to try to achieve it with a part as rigid as possible. We will 
maximize the stiffness for an imposed minimal reduction of weight (at least 100*α % of 
the weight of Max

GΩ ).  
 
 min ( , )

ad
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with M and u solution of (Eqs. (1) and (2)) on max[0, ]t  with appropriate initial and 
boundary conditions.  
 
In order to solve this problem using the TSOA illustrated in (Figure 1), we need to 
elaborate on the classical (i.e. steady objective function and state variable) shape 
optimization. 
 
Static Shape or Topological Optimization 
 
Shape optimization in its most general setting should consist of a determination for every 
point in space whether there is material in that point or not. As the theory related to shape 
optimization evolved, a clear distinction between shape (perturbations of the boundaries 
of an established shape) and topological (determination of the topology (holes, disjoint 
components) of the shape) optimization emerged. These techniques are generally used at 
different stages of optimization and performed separately. Topological optimization is 
usually considered as a tool for finding efficient design concepts at the early design stage, 
whereas shape optimization is viewed as a tool for detailed design at a later stage. In 
either case, the theory is based on a finite element (FE) mesh used to discretize the design 
domain. 
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In topological optimization the topology of the structure is not fixed a priori (it is possible 
to generate/eliminate holes and disjoint components). Alternatively, for a finite element 
discretization, every element is a potential void or structural member. Topological 
problems formulated this way are inherently discrete optimization problems but there are 
various ways of solving them without the use of discrete optimization algorithms. One of 
the most effective method is the SIMP approach (Solid Isotropic Material with 
Penalization) (Bendsøe 2002). Here, material properties are assumed constant within each 
element of the FE mesh and the variables are the element volume fraction of solid. The 
material properties are modeled as: 
 
 0( ) pθ ρ ρ θ=  (9) 
 
where θ  is a material property, 0θ  the solid material property, ρ  the volume fraction of 
solid and p  the power of the penalizing. This approach eliminate the use of complex rule 
of mixture for the intermediate values of volume fraction and in fact, for reasonable 
values of p, gives solution with very little, if any, intermediate values.  
 
As a first approach in shape optimization for the flooring strip, we will favour the 
topological optimization. The SIMP method will be used since it can be applied to 
problems with multiple constraints, multiple physics and multiple materials allowing us 
for a more general problem. 
  
The two main numerical difficulties of the SIMP are the checkerboard effect (regions 
with alternating solid and void elements) and the mesh dependency (qualitatively 
different design for refined FE mesh). A review of these problems and their treatment can 
be found in (Bendsøe and Sigmund 2002, Bruns 2005). Here, a mesh-independency 
algorithm that both eliminate the checkerboard problem and the mesh-dependency 
problem is applied. The method works by substituting the element-wise derivatives with 
respect to the volume fraction (sensitivities) with a weighted average of the sensitivities 
of their neighbours within a given radius. 
 
Topological Optimization for a Flooring Strip 
 
We consider a flooring strip made of sugar maple as shown in Figure 3. This basic 
flooring strip, geometrically composed of three rectangular prisms, will be considered our 
hold-all MaxΩ (we are looking for shapes contained into this basic shape). The top surface 
is 107.9 mm-wide by 609 mm-long. The construction considered is a 7.2 mm-thick 
surface layer, a 6.4 mm-thick core layer and a 5.1 mm thick backing layer for a total 
thickness of 18.7 mm and with tongue and groove of 5.5 mm deep. 
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Figure 3 The basic flooring strip used as hold-all for the model. On the right the flooring 
strip view upside down, view of Max

GΩ (here without material)  
 
We chose the final time to be of 42 days: we expose a flooring strip to an ambient relative 
humidity of 80% for a period of 42 consecutive days. From a finite element analysis for 
the hold-all we conclude that the first critical time of the TSOA should be at 18.5 days 
(which coincides approximately to the time where we observe extreme values of 
displacements).  
 
Using the fact that the stiffness tensor is constant in time and that no load is applied 
(freestanding condition) on the flooring strip we have 
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where M is the solution to (Eq. (1)) over the 42 days on the hold-all MaxΩ and u solution 
of (Eq. (11)) with appropriate initial and boundary conditions for both. Assuming a 
constant basal density and since we chose to measure the weight at the initial moisture 
content, which is constant through out the hold-all, the weight constraint is equivalent to 
a volume constraint: 
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where V denotes the volume. Hence, the following topological optimization problem 
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where u is the solution of Equation (11). 
 

Numerical Approach 
 
The numerical approximation is based on the finite element modeling following (Deteix 
2008). The finite element discretization of the Galerkin weak form of the mechanical 
equilibrium (Eq. (11)) and moisture conservation (Eq. (1)) was performed using standard 
isoparametric and linear interpolation of the unknown displacements u and moisture 
content, M.  
 
The time discretization of the mass transfer equation was performed by the standard 
Euler implicit time marching scheme. The predicted values of M, and u depend on 
position and time. A single system of discrete equation was solved for M at each time 
step. A user-specified initial time increment of 0.5 s was used. The following time 
increments were automatically adjusted between 0.1 and 100000 s by the software based 
on the convergence rate. 
 
Based on the finite element approximation of the displacement and using the SIMP 
method we produced a discrete optimization problem. The derivatives (or sensitivities) of 
the system with respect to the volume fraction were then calculated and filtered. The 
discrete optimization problem was then solved by standard optimizing scheme relying on 
the filtered derivatives to produce a discrete optimal solution. 
 
Numerical results are presented on the poster, and will be published soon. 
 

Conclusion 
 
The topological optimization strategy proposed is flexible and easily integrated in pre-
existing finite element code. The approach can be applied to problem having: more 
complex geometry, multiple material (EWF, composites, etc), more elaborate physics 
(boundary conditions, multiple mechanical constraint) or elaborate cost functional.  
 
Even though the application chosen to illustrate this approach is relatively simple and 
academic in its considerations, it contains, in its formulation and implementation, the 
principal difficulties that one have to treat when dealing with shape optimization for 
material under hygromechanical conditions.  
 
As a first approach in shape-topological optimization, the authors consider the results 
promising. It is clear that the method as to be refined for better integration to practical 
and industrial application. However, it should not be seen as a mere theoretical exercise. 
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Environmental considerations and better resources management is becoming paramount 
in our society, the use of tools such as proposed becomes inevitable. 
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