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Abstract 

 
In this paper, the development of a numerical model for the ageing linear viscoelastic 
behaviour of material in the general three-dimension context is addressed. More precisely 
we propose an approach allowing the integration in pre-existing linear viscoelastic 
numerical tools (specifically the finite element method) and avoiding time step 
restriction. The constitutive law based on the generalized Maxwell model is represented 
using a Dirichlet serie where the relaxation time functions depends on the rate and the 
history of variations of an arbitrary ageing function. The hardening and softening phases 
of the material are characterized by this function and the viscoelastic law takes into 
account non monotonous variations of the phases. The assumption of linearity of the 
strain is avoided by the use of an ordinary differential equation giving more freedom in 
the choice of the time step. A parameterized time stepping schemes is used to 
approximate the solution of the ordinary differential equation. The numerical procedure 
combines the finite-element method with an incremental formulation. The results for the 
numerical experiments to illustrate the performance of the proposed approach show good 
agreement with analytical results.  
 
 
Key Words: anisotropic, non monotonous aging, rheological generalized Maxwell 
model, finite-element method, viscoelasticity. 
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Introduction 
 
The interaction between moisture variations and the mechanical behaviour of wood is an 
important issue that impacts the durability and serviceability of wood products. The 
hygrothermal ageing induces a dependence of the rheological parameters upon moisture 
content and temperature. A better understanding of the mechanical behaviour of wood 
products subjected to changing environmental conditions could help for the design of 
wood composites and timber structures. A review of the approaches for modeling the 
creep phenomenon reveals (Hanhijarvi 1995) that strains could be described using a 
rheological model (one or more dashpots combined with springs) activated by moisture 
variations. 
 
The finite element modelling of non ageing viscoelastic isotropic materials has been 
widely studied in the literature (Ghazlan 1988). For the anisotropic case, the literature is 
mainly concerns with non ageing material (Zocher et al 1997, Poon et al 1998 and 1999). 
In the ageing case, Dubois et al (2005), have developed a one dimensional viscoelastic 
model according to the thermodynamic principles based on the generalized Kelvin-Voigt 
model. In a recent paper, (Chassagne et al. 2006), a three-dimensional model is presented 
based on a generalized Maxwell model with dashpots depending on stress level. Our 
work can be considered a continuation of the work in Fafard (2001) since we try to cover 
the ageing of the springs and the dashpots. 
 
Our purpose is threefold, first to develop, based on a generalized Maxwell model 
(GMM), a three-dimensional anisotropic model which should be thermodynamically 
admissible (respect the thermodynamic principles). Secondly, based on the linear 
viscoelasticity, the formulation should take into account ageing, manifested by change of 
the viscoelastic properties as function of time. Lastly, it should be easily integrated into 
pre-existing finite element (FE) code and should avoid imposing limitation on the length 
of the time step of the numerical methods. 
 

Statement of the Problem 
 
Let Ω be a regular open bounded domain of 3\ , representing a viscoelastic body 
subjected to mechanical loading (and possibly thermal and hygrometric variation). The 
state variables are: the displacement vector u=ui(x,t), the stress tensor σ = σij(x, t) and the 
strain tensor ε= εij(x, t), where x is the position vector, t is the time variable and i,j=1,2,3. 
Throughout this work we will omit the space and time variable x and t when no confusion 
is possible.  
 
The governing equation for the description of the linear viscoelastic response to the 
applied loading is the three-dimensional (incremental quasi-static state) equation of 
equilibrium:  
 
     in ]0, [b Ff tσ−∇ ⋅ = Ω×                          (1) 
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where Ft  is a non zero positive real number, bf is the body force and the strain tensor ε is 
related to the displacements, u measured along the xi directions: 
 

 1( )            1 , 3
2

ji
ij

j i

uuu i j
x x

ε
⎛ ⎞∂∂

= + ≤ ≤⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
                   (2) 

 
Equation (1) completely define the displacements if we have a constitutive law (relation 
between σ and ε(u)) and initial and boundary conditions. Note that we omit to specify the 
initial and boundary conditions since it is of no impact on the following. 
  
We introduce the relaxation time functions Rijkl (Christensen 1971) and the constitutive 
equation is given by 
 

 0

0

( , )  ,
t

kl
ij ij ijkl

dR t s ds
dt
εσ σ= + ∫                                    (3) 

 
where σ0 is the instantaneous response corresponding to the elastic state of the material. 
We define ageing as the time dependency of the properties of the material, let M be an 
arbitrary scalar function responsible for the aging of the material. The coefficients Rijkl 
depend M.  
 
Obviously we can consider more elaborate problems, for example a thermo-hygro-
mechanical problem (M is not a scalar but a pair of scalar functions, temperature and 
moisture content) and (Eq. (1)) is coupled with a thermal transfer equation (usually based 
on Fourier’s law) and a mass transfer equation (usually based on Fick’s law) for the 
moisture content. Of course, in such case (Eq. (3)) is modified by adding terms for the 
thermal and/or moisture induced strain. Since this presentation will be centered on the 
treatment of the relaxation functions Rijkl we will not treat coupling terms as in thermo-
hygro-machanical problem. However the approach proposed here easily cover those 
types of additions to the constitutive law (Eq. (3)). 
 
We are interested in a thermodynamically admissible model which implies that the 
constitutive equation (Eq. (3)) must satisfy certain conditions (Dubois et al 2005, Bazant 
1979). Our formulation is based on the Dirichlet series corresponding to the GMM. Using 
the conditions imposed for a thermodynamically admissible Maxwell model we will 
establish the conditions that must be imposed on the coefficients of the series for a 
thermodynamically admissible model. 
 

The Dirichlet Serie for the Relaxation Function and Ageing Phenomenon 
 
We introduce a Dirichlet serie (Bazant 1988) to define Rijkl in (Eq. (3)). Each component 
of the relaxation fourth-order tensor R is represented by: 
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where N is the number of cell in the Maxwell model. For wood material, ageing is due to 
variable climate conditions. This implies that the material properties depend on moisture 
content and temperature; hence the material properties vary in time. Since we want a 
series which is equivalent to the GMM there is a relation between the tensors Cµ and λµ in 
(Eq. (4)) and the more classical stiffness and viscosity of each spring and dashpot.  
 
Rheological Model 
 
For this model to be thermodynamically admissible it is necessary that every rheological 
element (a springs and a dashpot in serie) is thermodynamically admissible. Thus all 
springs and dashpots composing a rheological model must satisfy the positive dissipation 
condition. Fulfiling such condition can be guaranteed by imposing certain conditions on 
spring moduli and viscosities. 
 
When the spring modulus E is age-dependent, Bazant (1979) has proven that two distinct 
constitutive laws are required to satisfy the thermodynamic positive dissipation condition. 
The classical Hooke’s law for softening spring behaviour and the tangent law for the 
hardening spring. The elastic response of an aging spring is defined by using those two 
laws: 
 

 
 hardening (Bazant)
softening (Hooke)spring

E
E E

ε
σ

ε ε
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 (5) 

 
There is no need to modify the constitutive law for the dashpot (Newton’s law) (Dubois 
et al 2005). For μ  = 1,…,N consider, at most 81 Maxwell elements, where the spring 
coefficient is ijklEμ and the dashpot viscosity ijkl

μη  and introduce 
 

 
0

( )

( ) ( ) ( ) 

t

ijkl
s

t
kl

ijkl ijkl

d dt C s e s ds
d

μ

μ μ
λ θ θ εσ

θ

−

=
∫

∫  (6) 

 

 
0 if hardening

          ( )           ( )
1 if softening

ijkl ijkl
ijkl ijkl ijkl ijkl ijkl

ijkl ijkl

C C
C E M M

C

μ μ
μ μ μ μ μ

μ μλ
η

⎧
= Θ = = − Θ⎨

⎩

�
 (7) 

 
Using the definitions given in (Eq. (7)) and formally deriving in (Eq. (6)) we can show 
that 
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Equation (8) is the differential form of the constitutive equation for an ageing Maxwell 
element and it describes a stress in direction ij produced by a strain in direction kl. Since 
(Eq. (8)) is based on (Eq. (5)), this element is thermodynamically admissible. Clearly σ 
satisfying (Eq. (3)) is the superposition of the elementary stress σijkl  
 
 0

 
ij ij ijkl

k l

μ

μ

σ σ σ= + ∑∑  (9) 

 
Then σ is the stress of an anisotropic ageing three-dimensional thermodynamically 
admissible GMM. Thus, the stress defined by (Eq. (3)) with the use of the Dirichlet series 
(Eq. (4)) is equivalent to the use of a generalized Maxwell model and in accordance with 
the thermodynamic principles provided that the coefficients of the series satisfy (Eq. (7)). 
 
Multiple Parameter Ageing Formulation 
 
In the spirit of (Dubois et al 2005, Bazant 1979), we propose to formulate the ageing 
properties as follow: for each cell μ = 1, 2, . . . N, we denote ,ref

ijklEμ ,ref
ijkl
μη the stiffness and 

viscosity at reference ageing refM , and use two scalar function to take into account the 
ageing 
 
 ( , ( , )) ( , ) : ,         ( , ) 1     ijkl ijkl ijkl refb x M x t b x t b x M xμ μ μ= Ω× = ∀ ∈Ω\6\  (10) 

 ( , ( , )) ( , ) : ,          ( , ) 1     ijkl ijkl ijkl refl x M x t l x t l x M xμ μ μ= Ω× = ∀ ∈Ω\6\   (11) 

 , ,( , ) ( , ) ( , ) ( , )ref ref
ijkl ijkl ijkl ijkl ijkl ijklE x t b x t E x t l x t

μ μ μμ μ μη η= =  (12) 
 
In the isotropic/orthotropic case, if the Poisson coefficients are constant in time, a one-
parameter formulation can be justified for isotropic material. For orthotropic material 
(such as wood), we need at least 4 parameters (one for the normal stress and three for the 
shearing stress).  
 
Each pair ( ijklEμ , ijkl

μη ) is a uniaxial Maxwell element. In order to satisfy the 

thermodynamic we use (Eq. (5)), which can be described using the derivative of ijklbμ . 
Denoting 
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ijkld μ correspond to the reduced time, 
,ref

ijkl

μ

λ to the reference relaxation time and (Eq. (7)) 
becomes  
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Introducing  
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the tensor ijklDμ has only minor symmetry ( ijkl jikl ijlkD D Dμ μ μ= = ) so that there are at most 36 
scalars to track in the general anisotropic case. This leads to a rewriting of (Eqs. (3)-(4)) 
using (Eq. (16)) 
 
 0 ,

 

ref
ij ij ijkl ijkl

k l

E Dμ μ

μ

σ σ= + ∑∑  (17) 

 
A Differential Formulation 
 
This formulation is inspired by the paper of Poon et al (1999) to produce a numerical 
model based on an ordinary differential equation coming from the definition of ijklDμ .  
 
We define  
 

 ( ), ( , ) ( ) ( , )
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 ˆ ( , ) ( , ) ( ,0)kl kl klx t x t xε ε ε= −  (19) 
 
The derivative of ijklsμ gives 
 
 ( ) ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )ijkl ijkl ijkl ijkl kl ijkl ijkls x t b x t b x t x t x t x t s x tμ μ μ μ μ μλ ε λ= + −��  (20) 
 
In summary, going back to ijklDμ  in (Eq. (16)), the stress will satisfy 
 

 0 ,

1

N
ref

ij ij ijkl ijkl
k l
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μ

σ σ
=

= + ∑∑  (21) 

 ˆijkl ijkl kl ijklD b sμ μ με= −   (22) 
 
with ijklsμ solution of the differential equation 
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 ( ) ˆijkl ijkl ijkl ijkl kl ijkl ijkls b b sμ μ μ μ μ μλ ε λ= + −��  (23) 

 ( ,0) 0ijkls xμ =  (24) 
 
In the non-ageing cases this correspond to the model presented in the paper of Poon et al 
(1998).  
 
The central point of this presentation, from an algorithmic point of view, is (Eqs. (23)-
(24)). Consider a partition of the time interval [0, ]Ft  into Q subintervals  
 

 
1

1 1 1
0

[0, ] [ , ],             0,..., 1
Q

F n n n n n
n

t t t t t t n Q
−
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=
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In Bazant (1979), Ghazlan (1988) and Zocher (1997) the constitutive equation is 
discretized, using an incremental approach, assuming that the strain is linear over the 
time interval 1[ , ]n nt t + , which necessitate sufficiently small ∆t for accuracy and numerical 
stability. The use (Eqs. (23)-(24)) allows more flexibility for the time step as we can 
chose a suitable time integration method based on accuracy. More significantly, it 
removes the need for assumptions such as linear time variation of strain throughout a 
time step.  
 
Applying the simple θ-schemes family: θ = 0, 1, 1/2 (corresponding to Euler-explicit, 
Euler-implicit and Crank-Nicholson schemes respectively) to (Eq. (23)), using the 
notation nf  for ( , )nf x t , gives 
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Denoting 
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We have, from (Eq. (21)), the time-discrete constitutive law 
 



Proceedings of the 51st International Convention of Society of Wood Science and Technology 
November 10-12, 2008 Concepción, CHILE 

 

Paper AP-4          8 of  9 
 

 1, 1 1 0 1 2, 1ˆ ˆn n n n n
ij ijkl kl ij ij ijkl klE s Eσ ε σ ε+ + + += + − −  (30) 

 
Conclusion 

 
We propose a numerical algorithm for three-dimensional anisotropic ageing Maxwell 
model. The model can be coupled with thermal and hygrometric transfer. The model is 
thermodynamically admissible and can be easily integrated in pre-existing FE code as 
shown by (Eq. (30)).  
 
The model allows the use of multiple reduced time, and can be viewed as an extension of 
the work of Poon et al (1998) to ageing material. We are working on the relation of this 
model with the work of Zocher (1997), trying to establish if the linear assumption on the 
strain can be related to a specific time stepping scheme for (Eqs. (23)-(24)). 
 
We performed some preliminary tests on an isotropic cantilever beam subjected to tip 
loading coupled with moisture transfer. The numerical results were in accordance with 
the literature. Most importantly, we had a noticeable gain in performance since we used 
time step almost ten time larger for comparable results obtained by Zocher (1997).  
 
These encouraging results suggest undertaking further experiments with realistic data. 
The main difficulty is the determination of parameters for the three-dimensional case. We 
are presently doing experimental work on maple. 
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