

Simulation of Lumber Production Planning Using Software Agents: a Case Study

Fabián CID YÁÑEZ, Universidad Austral de Chile Jean-Marc FRAYRET, École Polytechnique de Montreal Alain ROUSSEAU, Université Laval Francois LÉGER, Forintek Canada Corp

> SWST 51st Annual Convention Concepción – Chile November 10 – 12, 2008

From Physics

To overcome inertia, is it easier to pull an object or to push it?

Presentation outlook

- Objective
- Lumber market context in Québec
- Production Planning
- Lumber Production Planning (LPP)
- Simulation using agents
- Experiment
- Results and discussion

 To evaluate the logistical and financial performance of a softwood sawmill production planning process under push and pull based strategies using a simulation platform.

Context for Québec's Lumber Industry

- Competitive forces from low cost producers
- Timber cost going up
- Economic conditions, such as a stronger CDN\$ or taxes
- Market and customer changing forces

Production Planning

- To decide what, when and where to produce it, using different time spans
- Capacity planning (capacity allocation)
- Demand management (ATP and priority allocation)
- Materials requirement planning or sourcing

Production Planning

Drivers

- Supply driven (upstream signal)
- Recipe driven
- Demand driven (downstream signal)
- Strategy elements
 - Decision and information decoupling point
 - Performance criteria

Lumber Production Planning

Lumber Production Planning

Divergent industry (V-type flow)

Lumber Production Planning

- Approaches
 - Traditional: Producing lumber based on recovery optimization
 - ≻Push
 - Command-based: Producing lumber based on targeted service levels at different points
 Pull

Simulation Using Agents

Simulation Using Agents

- General characteristics:
 - Emulate actual behavior
 - May have some autonomy
 - Some communication skills
 - Perform a given task
- Specific
 - Optimize decisions (Mixed models)
 - Exchange plans
 - Multi-agents

Simulation Platform

Concepción - Chile

Simulation Coordination

Simulation Coordination

Simulation Coordination

Experiment

- Design for deterministic simulation
 - Actual sawmill modeled using Optitek ®
 - Mixed design (54 runs or production plans)
 - 2 Controllable Factors
 - Decoupling Point Position (3 levels)
 - Contracts levels for 2x4 RL 2& Better (60-80-100%)
 - 2 Noise Factors
 - Supply Quality (normal and small)
 - Market prices (3 lists)

Experiment

Performance evaluation

November 10-12, 2008

Results

Pull strategy respond better to contracts

Results

Push strategy generates more money (at least potentially)

Discussion

Contract level	Average Potential monetary Throughput (\$)	Loss (\$)	Loss (%)	Premium (%)
Pure push strategy				
0%	<mark>\$ 12 433 143</mark>	\$ 0	0%	0%
Pure pull strategy (Configuration C)				
60%	\$11 987 22 0	\$ 445 924	3,59%	7,75%
80%	<mark>\$11 756 677</mark>	<mark>\$ 676 467</mark>	5,44%	8,99%
100%	\$11 637 634	\$ 795 509	6,40%	8,54%

 The sawmill should be "specialized" given its supply and technology and "match" this with the clients it serves

Thanks for your attention ...and congratulations for your endurance.

November 10-12, 2008

For further details

www.forac.ulaval.ca

www.uach.cl/facultad/forestal/

Universidad Austral de Chile

Facultad de Ciencias Forestales

November 10-12, 2008