A High Resolution Laser-Based Technique for Quantifying the Elemental Composition of Wood: Applications in Biomass Characterization

SWST - Recent Advances In Analytical Methods, Knoxville TN, June 10, 2007

Outline

- Rationale
- Experimental Setup
- Advantages of LIBS

• Results: Natural and treated wood Forest fire affected wood

• Multivariate Model LIBS model approach

Sensors and controls are important components of the forest industry

American Forest & Paper Association (1999)

Sensors & Control Task Group - "Good control requires <u>timely knowledge of process parameters</u>, including <u>accurate</u> <u>measurement</u> or estimation of key variables."

DOE/OIT (2003)

Crosscutting sensors and controls – "Focus is on control systems, <u>chemical and physical property measurements</u>, <u>numerical</u> processing, imaging, and emissions measurement."

Measurement focus of forest product industry has been on organic constituents of wood – cellulose, hemicellulose, lignin, fiber properties, strength,

stiffness, etc.

We believe that an opportunity exists to complement this focus by now examining the inorganic or elemental composition of wood in environmental events

Experimental Setup for LIBS

LIBS = Laser-Induced Breakdown Spectroscopy

Temporal Resolution of a Laser Spark Ions & Neutral Ions Molecules & neutral atoms atoms Time of spark formation **Background continuum** 15 10 Laser pulse Time (μs)

OAK RIDGE NATIONAL LABORATORY

Periodic Table for LIBS

Advantages of LIBS

- *High throughput detection*. Identification of metals and nonmetals in a second.
- *Multi-elemental analysis*. Simultaneously detect all elements with high spectral resolution from solids, liquids, gases, and aerosols.
- *Remote analysis*. Fiber optics permit instrument operation away from a hazardous/industrial site.
- *Minimal sample preparation* and no waste generation.
- *Continuous monitoring capability*. Depth profiling and mapping can be accomplished.
- *Robust instrumentation*. No moving parts in the instrument.

Translational Stage-High Spatial Resolution Data

Dendrochemistry using LIBS

Laser Interaction with Matter

Laser interacts with the different states of matter differently:

Solid (absorptive, I_b is less than gases, bonds, breakdown is wavelength dependent)

Laser interaction Liquid (transparent, I_b is more than a solid but less than gases, wavelength dependent)

Aerosol (particle size dependent, solid vs droplet, I_b is between solid and liquids, wavelength dependence)

Gas (transparent, breakdown is difficult, wavelength dependent)

Dependence of Laser Wavelength on Threshold of Breakdown

Understanding the Parameters in LIBS

The breakdown threshold, I_b, of a gas is given as: $I_b = (n_{ad}/g_g) [\phi/v_{ca}]^2 (1/\tau_e) ln(n_e V_v)$ where n_{ad} is the neutral atom density, g_g the gas-dependent parameter, ϕ the laser frequency, τ_e duration of laser pulse,

n_e electron density,

 v_{ca} the neutral atom collision frequency,

 V_{v} the focal volume of the laser beam.

Comparison of LIBS spectra for two different treated woods.

OAX RIDGE NATIONAL LABORATORY

Quantification of LIBS Data

Input characteristics (laser energy, pulse width, focal volume, plasma temperature)

 Output characteristics (spectrum, peak heights, Area under peaks, correlation to another technique)

Multivariate Analysis.

PCA: a non-directed analysis of the spectral data

PLS: directed analysis

Principal component analysis used to observe any clustering or separation in the sample sets.

Principal component analysis for four different treated woods

Regression statistic

		Calibration		Validation	
Set	Element	r	RMSEC	r	RMSEP
ACZA Douglas Fir 4 Principal Components	Cu	0.99	0.352	0.97	0.913
	Zn	0.99	0.224	0.90	0.673
	As	0.98	0.240	0.90	0.769
CCA Eastern Hemlock 4 Principal Components	Cu	0.99	0.080	0.91	0.272
	Cr	0.99	0.224	0.88	1.089
	As	0.99	0.192	0.88	0.897
CCA Hemlock-Fir 2 Principal Components	Cu	0.98	0.144	0.97	0.272
	Cr	0.97	0.416	0.97	0.625
	As	0.92	0.497	0.91	0.593
ACQ Hemlock-Fir 3 Principal Components	Cu	0.98	0.593	0.89	1.057

Fire maintains ecosystem Study fire and its role in nature Nature fire regimes

Hunting, ceremonies, clearing maize fields

Line Scan

OAK RIDGE NATIONAL LABORATORY

LIBS spectra on pine xylem before and after a fire

Score of PC1 versus spectrum number 200 100 0 After fire Before fire event event PC1 -100 -200 -300 At fire event -400 10 20 30 40 50 0 Distance (mm) from pith to bark

Loading of the PC1 of the LIBS spectra

LIBS spectra for three bio-oils

Future Work

LIBS on Chestnut Oak for understanding fire events:

- Low intensity fire
- Medium intensity fire
- High intensity fire
- Direction of fire
 - •Uphill
 - •Downhill

LIBS will also be performed on the roots of the same trees

LIBS on bio-oils and bio-diesels will also be performed

Acknowledgements

- The wood work is supported by Laboratory Directed Research and Development SEED Funds at ORNL.
- Deanne Brice helped in experimentation and sample preparation.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

