Implementation of a multi-axial loading path material characterization system John C Hermanson¹ John G Michopoulos² Tomanari Furukawa ³ Samuel G. Lambrakos²

- 1. USDA Forest Products Laboratory
- 2. Naval Research Laboratory
- 3. University of New South Wales

- Point out that structural material characterization has not changed in principle in 500 years
- Demonstrate that a need exists for alternative methods for material characterization
- Provide overview of the methodology
- Show results through examples

The Beginnings of Mechanics

Leonardo da Vinci (1452-1519)

"Testing the Strength of Iron Wire of Various Lengths"

Timoshenko, "History of Strength of Materials"

The Beginnings of Mechanics

Robert Hooke (1635-1703)

Hooke's Law

William Oughtred (1632) Invented the logarithmic slide rule

Timoshenko, "History of Strength of Materials"

The Beginnings of Mechanics

Cauchy (1789-1857) Generalized Hooke's Law

Timoshenko, "History of Strength of Materials"

Operational Philosophy

- Why change?
- Science "Push" vs Industry "Pull"
- Computational power of the computer
- Resistance to change
- Standards Organizations (ASTM etc)
- Building Codes
- End users
- Academic Scientific Method

- Industry Pull
- Realistic Systemic Simulation/ Prediction
- Inexpensive Material Qualification/Certification
- Quick Material Insertion
- Rapid Prototyping and Production

Operational Philosophy

- Technology Pull
- Computational Technology
- Automation
- Computational Symbolic Math
- Automated Software Synthesis

Operational Philosophy

- Producers view:
- Rapid and inexpensive characterization of new materials
- Utilization of existing material behavior databases constructed from massive automated testing
- Automated synthesis of material behavior theories and finite element models for structures of interest
- Studies of material/structural behavior as a function of operational system requirements

- Measure first, then Model (Data driven Modeling)
- Interpolate, NOT Extrapolate
- Locally flat Parameter Spaces (Continuity of parameters)
- Work only with commonly accepted composition rules
- Automate, then Apply

- Axioms of Enrichment:
- The Axiom of Continuous Behavior
- The Axiom of Composition Behavior
- The Axiom of Zero Order of Reality

 "Mechanics is the paradise of mathematical science because here we come to the fruits of mathematics."

Leonardo da Vinci

General Case and Planar Mode:

3 displacements + 3 rotations + 3 forces + 3 moments + Np x 6 strains + Np x Nf = 12+(6+Nf)xNp Datastreams

Systematic Material Identification, 3 DOF Motions:

Winding Path

Optimal Solution:

Profile	<i>Ef</i> Actual	Ef Predicted	\otimes %
	(psi)	(psi)	
ASTM	311000	319000	2.6
Box	182000	179000	-1.6

Design Load = 20000 lbss

Actual Load = 20007 lbs COV = 3.6%

Center Displacement (in.)

Conclusions

- Hardware exists to evaluate materials in multiphysics environment.
- First generation software is available to analyze data.
- Second generation data is being developed.
 - Utilize objective functions to optimize loading path.
 - Non-proportional loading paths perform better.
- Data-Driven approach is appropriate to meets the demands of "Industry Pull."
- Need to overcome resistance to implement changes.

 Office of Naval Research under grants N0001497C0395 N0001407WX20808, N0001407WX209318, and by NRL's 6.1 coreprogram.

Questions?

 Nothing in Nature is random. ... A thing appears random only through the incompleteness of our knowledge.

