Low-Field, Time-Domain NMR and its Application to Wood Science and Technology

Society of Wood Science and Technology 50th Annual Convention, June 10, 2007 Advanced Analytical Techniques for Wood and Biomass Knoxville, Tennessee

Thomas Elder
USDA-FS-SRSLisbeth Garbrecht ThygesenForest and Landscape, Faculty of Life Sciences, Copenhagen University
Nicole Labbé
Forest Products Center, University of Tennessee-Knoxville

UNIVERSITY OF COPENHAGEN

Frequency domain

Time domain

NMR

Time Domain NMR

- The time required for the nuclei to return to equilibrium after excitation is the "relaxation time" (this type of NMR is sometimes referred to as "relaxometry")
- T1 relaxation or spin-lattice or longitudinal relaxation.
 - Energy is dissipated to the molecular framework
- T2 relaxation or spin-spin or transverse relaxation.
 Energy is dissipated to neighboring nuclei.
- Nuclei in different environments have different T1 and T2 relaxation times

Fitting Decay Curves

90 80

70 60

50 40

30 20

10 0

- The simplest way to determine T2 is as 36.8% of maximum signal
- Fit exponential functions
- Mixtures of gaussian and exponential functions
- These generally give discreet values for relaxation times
- FID of solids are not fit by exponentials
- Liquids can be fit by exponential functions

Relaxation Time Distributions

- These methods can fit multiexponential functions
- Width and position provides information about the various environments
- Methods
 - Contin
 - UPEN
 - NNLS
 - MVA

Applications of Time Domain NMR

- MRI
- Geology
 - porosity
- Food
 - Water/fat content
- Textiles
 - Fabric finishes
- Cosmetics
- Polymers

Low-Field NMR

- Typical analytical spectrometers operate at several hundred MHz
 - FT converts the time domain information to the frequency domain
- The same thing can be done with a low field (20-60 MHz) instrument but the spectrum is poorly resolved
- Alternatively, information can be extracted on relaxation times (the time required for the atoms to return to equilibrium after the RF pulse)

Low-field NMR spectrometers (not exhaustive or inclusive)

- Bruker Optics (minispec)
- Oxford Instruments (Maran)
- Magritek
- Tel-Atomic
- Process NMR
- One sided NMR
 - NMR-Mouse
 - Minispec Profiler

one-sided NMR

Advantages and Disadvantages of Low-Field NMR

- No frequency domain spectra
- Accept both solids and liquids
- Limited sample preparation
- Large sample sizes
- Long dead time (9-38 µs)
- Detects hydrogen, phosphorus, fluorine
- Little maintenance
- Ease of operation
- Relatively inexpensive

Examples of Literature on Time-Domain NMR of Wood

- Moisture interactions and Imaging
 - UBC/Forintek (MacKay, Hartley, Araujo, Menon)
 - Labbé
 - Ye (OSB)
- Porosity and Diffusion
 - STFI (Häggkvist et al.)
 - Lund University (Topgaard and Söderman)
- Paper
 - Capitani et al.
- Fungi
 - Gilardi
 - Müller

- Black Liquor
 - Draheim and Ragauskas
- Adhesives
 - Pizzi
 - Root and Soriano
- Cell and Ring size
 - Wycoff
 - Johannesen
- Thermal
 - Hietala et al.
- pH
 - Ahvazi and Argyropoulos
- Wood-Adhesive interactions
 - Frazier

Relaxation Times for Wood Components

- Solid matrix
 - Fastest relaxation times T2<1 ms (Labbé et al. 2002)
- Bound water
 - T2 ~ 1ms
- Free water
 - T2 ~10-100 ms
- Extractives
 - T2 ~7-150 ms (Labbé et al. 2002)
- Detecting the hydrogens in the solid matrix requires a short dead time
- FIDs of solids are not fit well by exponential functions so it's difficult to extract accurate relaxation times

Relaxation Times for Wood Components

- Liquids are well described by exponential functions
- As such, water in various environments in the woody cell wall can be detected and analyzed
- This has mainly been done by the analysis of T2 by CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence.

Current work on Low-field Time-domain-NMR

- Bruker minispec mq20
- Low field proton NMR (20 MHz)
- Relaxation times of protons
 - Free induction decay
 - T1 (spin-lattice)
 - T2 (spin-spin) (CPMG experiments)
- Decay curves were analyzed using Contin to determine distributions of relaxation times

Furfuryl Alcohol Modified Wood

Introduction

 Modification with furfuryl alcohol is proposed as a method for improving dimensional stability of wood and its resistance to biological degradation.

Furfuryl Alcohol Modified Wood

- Polymerization
 - Furfuryl alcohol in the presence of a catalyst forms Poly(FA)
 - The polymer and the mechanism by which it is formed is complex
 - Head-to-tail and head-to-head dimers are initially formed
 - Conjugated chromophore segments are also produced.

Methods

- Scots pine (*Pinus sylvestris*) was collected from northern Zealand in Denmark
- Samples were machined to 15x25x30 mm and conditioned at 20°C at 65% RH
- Samples were treated by
 - Pre-drying-at 103°C for 16 hours
 - Impregnation-under vacuum
 - Curing-wrapped in aluminum foil and cured at 103°C for 16 hours
 - Drying-40°C for 144 hours

Methods

- Sample treatments
 - Furfuryl alcohol (FA)
 - Undiluted (98%)
 - Citric acid (CA)
 - 2% in DI
 - Citric acid (CA)+maleic anhydride
 - CA (2%)+MA (1%) in DI
 - FA+CA, low WPG
 - FA(20%)+CA (0.77%)+ETOH(77%)+DI(2.23%)
 - FA+CA, high WPG
 - FA(72.5%)+CA(2.78%)+ETOH(19.7%)+DI(5.02%
 - FA+CA+MA, low WPG
 - FA(22.6%)+CA(0.25%)+MA(0.125%)+DI(5%)
 - FA+CA+MA, high WPG
 - FA(72%)+CA(1%)+MA(0.5%)+ETOH(19%)+DI(17.5%)
 - WPT
 - Commercial furfuryl alcohol treatment

Results

- Weight gain
 - CA, 3%
 - CA+MA, 4%
 - FA, 51%
 - FA+CA, low, 15%
 - FA+CA, high, 96%
 - FA+CA+MA, low, 17%
 - FA+CA+MA, high, 92%
 - WPT, 39%

Low-field Time-domain-NMR

- Samples were placed into 18mm diameter test tubes, covered with water, a vacuum was applied, and the samples were conditioned for a week.
- NMR parameters
 - CPMG experiment
 - Tau=0.5ms
 - 512 echoes
 - 32 scans
 - 5 second recycle delay
 - Gain was tuned for each sample
- Decay curves were analyzed using Contin to determine distributions of relaxation times

Control

- Decay curves are exponential
- T2 results show peaks for bound water, ~1ms
- Free water appears as two fairly wellresolved peaks at about 15 ms and 50ms
- Bound water at FSP relaxes more rapidly because there is only interaction with the cell wall

contin distribution

Citric Acid

- Both the decay and Contin distributions are similar to the control
 - Bound water and free water are readily evident

decay

contin distribution

decay

16

Citric acid+ maleic anhydride

decay

contin distribution

Also similar to control

Furfuryl Alcohol

decay

- Decay curve is still exponential
- Free water distribution is not as well-resolved
- The bound water is relaxing more rapidly (T2(1) is shorter)

- Incomplete decay
- Longer relaxing peak (~10ms)
 - may be an artifact of the incomplete decay
 - May be FA itself or water bound to FA

Furfuryl alcohol+ citric acid (low)

- Decay curve remains exponential
- Resolution in free water continues to degrade

decay

decay

Furfuryl alcohol+ citric acid (high)

- The initial part of the decay curve is reasonably well-behaved, but neither sample completely decays
- The bound water peak for the saturated sample is much broader and the relaxation time is shorter
- The free water is very poorly resolved
- Multiple peaks in the sample at FSP

 \bullet

- Decay curves are typically exponential
- Bound water relaxation time is somewhat longer than previously observed
- Free water is fairly wellresolved.

decay

contin distribution

decay

contin distribution

FA+CA+MA high

- Decay curve of saturated sample is similar to the FA+CA, high treatment, exhibiting incomplete decay.
- Poor resolution in free water
- Bound water amplitude is higher for the saturated sample
- Sample at FSP shows reasonable decay, but shoulder at longer T2

Typical exponential decay curve Somewhat longer relaxation time for bound water

• Only one free water peak

decay

contin distribution

Saturated samples Contin T2(1) values and MC

- As might be expected moisture contents markedly changed with treatment
- Inclusion of FA consistently lowered MC, particularly at high weight gains

 T2 and MC correspond closely

MC for these samples ightarrowis also sensitive to treatment, and becomes quite low (~9%) with the high weight gain treatments

 As before MC and T2 correspond fairly well.

Results and Conclusions

- Weight gain occurs with the inclusion of FA
- LF-TD-NMR, shows decreased relaxation times for free water (which correlate well with moisture content) indicating lower levels of free water (reduction in "pools" of water)

Enzyme-cellulose-water studies

- Hypothesis
 - Cellulase enzymes bind to cellulose surfaces displacing bound water
- 1 g of Whatmann # 1 filter paper
- 2 g of buffer with or without enzyme(s)
 - Control -just buffer
 - 5 mg protein endohydrolase T. *longibrachiatum* (EG)
 - 5 mg protein cellobiohydrolase T. *longibrachiatum* (CBH)
 - 10 mg protein Celluclast (Novozymes)
- Allowed to soak for 5 min
- No mechanical mixing!
- NMR recorded from 0 to 360 min.

Control

- Bound water (~10ms) and free water (~100ms) are readily apparent.
- There is also a small shoulder just below 1000ms that disappears over time.
 - This is probably "bulk" water that is being adsorbed as the experiment progresses
 - Relaxation times of bound and free water increase initially and then remain fairly constant

Endoglucanase

 Both bound and free water relaxation times increase with time

Cellobiohydrolase

 Bound and free water T2s fluctuate over a narrow range

Celluclast

 After an initial rapid increase, both bound and free water relaxation times increase slightly with time

Comparison of bound water T2s

- In general, relaxation times for endoglucanase and cellulclast are longer than control
- Cellobiohydrolase results in shorter relaxation times

Comparison of free water T2s

- More pronounced difference between endoglucanase/cellucl ast and control/CBH
- Free water is relaxing more slowly with treatment and time.
 - This could be due to an increase in "bulk" water or an increase in porosity

A2/A1

- Ratios of amplitudes indicates that the relative amount of free water increases with celluclast treament
- Very small difference between control and endoglucanase

Results

- The relaxation times for bound water (T2(1)) do not vary much and don't show much in terms of patterns between the treatments. Although the control is generally faster.
- The relaxation times for the free water (T2(2)) are similar for the enzyme treatment and both are longer than the control.
 - The longer relaxation times could mean
 - an increase in porosity due to the action of the enzyme
 - Simply interaction of the water with the enzyme
 - An increase in of free water (?)

Other completed and ongoing studies

- Charcoal
- Cellulose treated in electron beam
- Effect of pre-treatment on biomass
- Detection of extractives
- Thermal treatment of MDF furnish