Fastener Corrosion Issues: Testing, Codes, and Design

Samuel L. Zelinka & Douglas R. Rammer

Overview

- Fundamentals of Corrosion
- Designing to Minimize Corrosion
- Codes & Standards
 - · AWC
 - · ICC-ES
 - AWPA E-12
- Current Research
 - Simpson Strong Tie
 - Forest Products Laboratory

Fundamentals

- All metals corrode
 - Metastable
- Corrosion rate
 - Reaction kinetics
 - Key figure of merit
 - Depends on
 - Chemical environment
 - Physical environment
 - Corrosion products

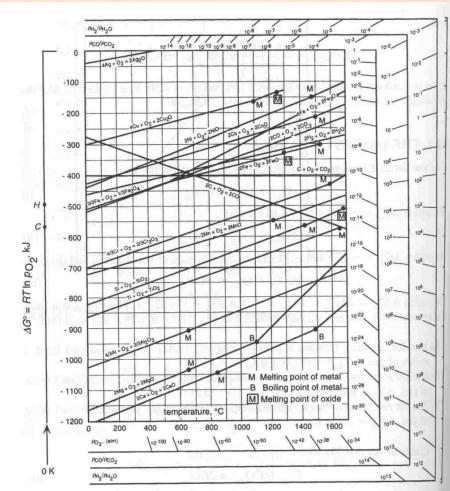
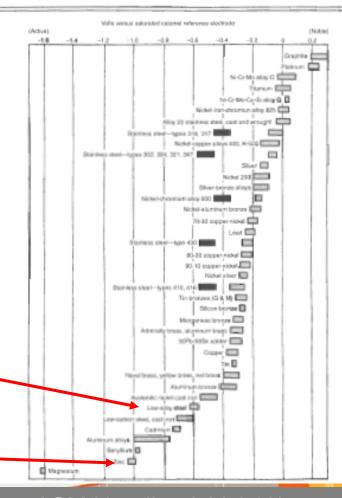


Figure 12.13 The Ellingham diagram for selected oxides

Introduction to the Thermodynamics of Materials - Gaskell


Fundamentals

- Galvanic Series
 - Only valid for seawater
 - Thermodynamic ranking
 - Does NOT rank corrosion rates

Low Alloy Steel 2.9 mils/year____

Zinc 0.6 mils/year

Galvanic Series of Metals and Alloys in Seawater

ASM Handbook Vol 13b

Design Considerations

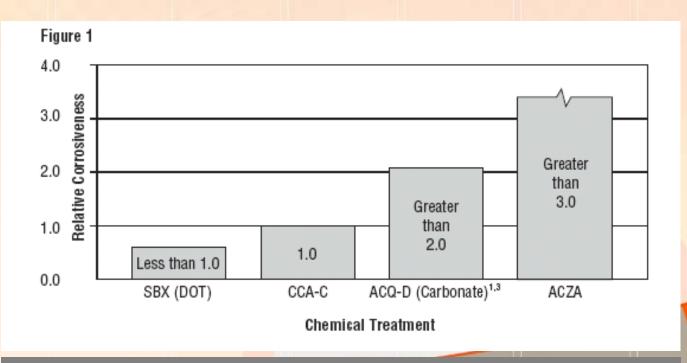
- Protective Coatings
 - Metallic Coatings
 - Anodic coatings (galvanizing)
 - "Self healing"
 - Cathodic coatings
 - Pitting corrosion at defects
 - Corrosion performance
 - Corrosion rate of coating
 - Defects in coating

Design Considerations

- Non-Metallic Coatings & Barriers
 - Coatings do not "corrode"
 - Subject to degradation
 - Pitting corrosion at defects
 - Currently researched at FPL
 - Based on epoxy coated rebar techniques
 - Barriers
 - Same concerns as coatings

Codes & Standards

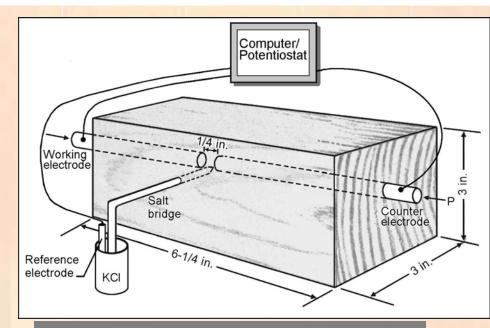
- AF&PA AWC
 - Corrosion fact sheet
 - Minimum of hot-dip galvanized or equivalent
 - PWF Design Specifications (Draft)
 - "Fasteners in contact with preservative treated wood shall be of Type 304 or 316 stainless steel"
 - Exception: CCA treated wood, moisture content less than 19%,
 - hot-dip galvanized allowed


Codes & Standards

- AWPA E-12
 - Metal coupons held between wood blocks
 - 49°C ± 1°C (120°F± 2°F) with RH of 90% ± 1%
 - Minimum 240 hours exposure
 - Coupons cleaned, corrosion rate reported

Codes & Standards

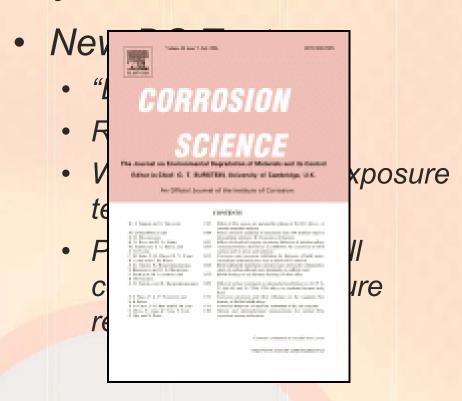
- ICC-ES Acceptance Criteria A326
 - Approved March 1, 2006
 - Min 10 replicates
 - Fasteners driven into wood
 - Then follows AWPA E12 exposures
 - Fasteners cleaned & visually inspected
 - Fastener shall pass if it has less than 25% surface corrosion


- Simpson Strong Tie
 - 1,800 AWPA E12 Tests
 - 3,000+ Modified E12 Tests
 - Using actual fasteners

Simpson Strong Tie Technical Bulletin T-PTWOOD06

- Forest Products
 Laboratory
 - Electrical Impedance Spectroscopy (EIS)

- Pros
 - Test at MC or T of interest
 - Measure diffusion controlled reactions
 - Prevent permanent polarization of preservative
 - Model corrosion via equivalent circuit


TMS Lett. 2(1) pp.15-16

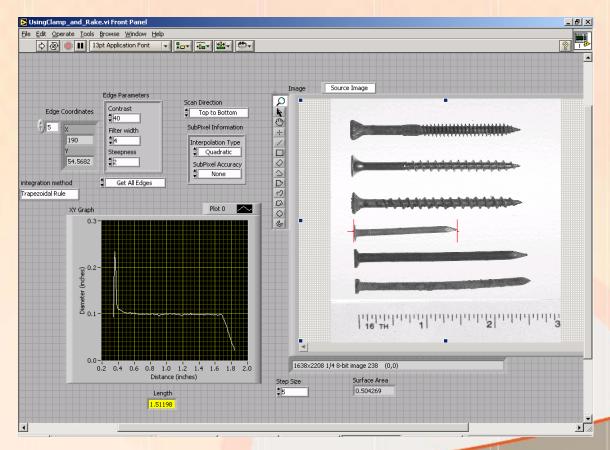
- Cons
 - Requires expensive equipment
 - Data analysis requires modeling

- Forest Products Laboratory
 - DC methods
 - LPR, Polarization
- Pros
 - Simple data analysis
 - Rapid
 - Test at temperature of interest
 - Theory well studied

- Cons
 - Affected by solution resistance
 - Not well suited to solid wood

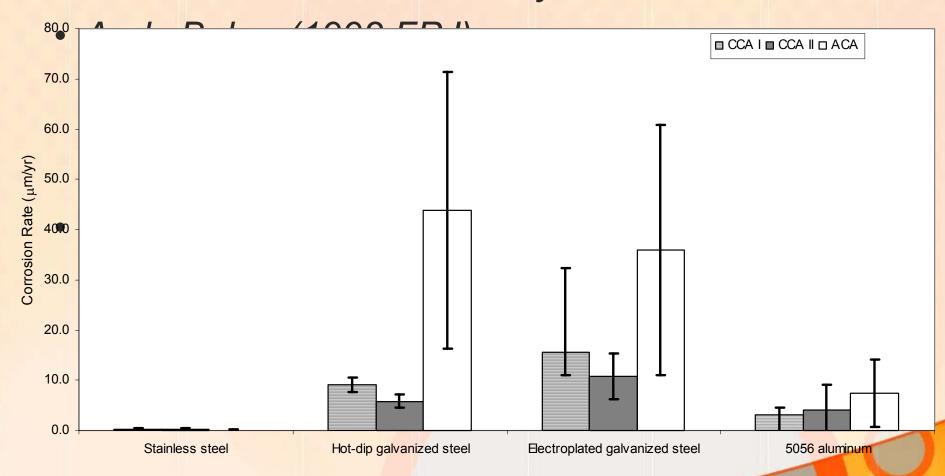
- Forest Products Laboratory
- Original DC Tests
 - Solutions of CCA, ACQ
 - Diluted to 0.25 pcf (etc.)
 - 1018 steel, 304 stainless, zinc, and 430 stainless
- Results
 - Steels < 4μm/yr
 - Zinc (no results)
- Conclusions
 - Preservatives change corrosiveness upon entering wood

Forest Products Laboratory

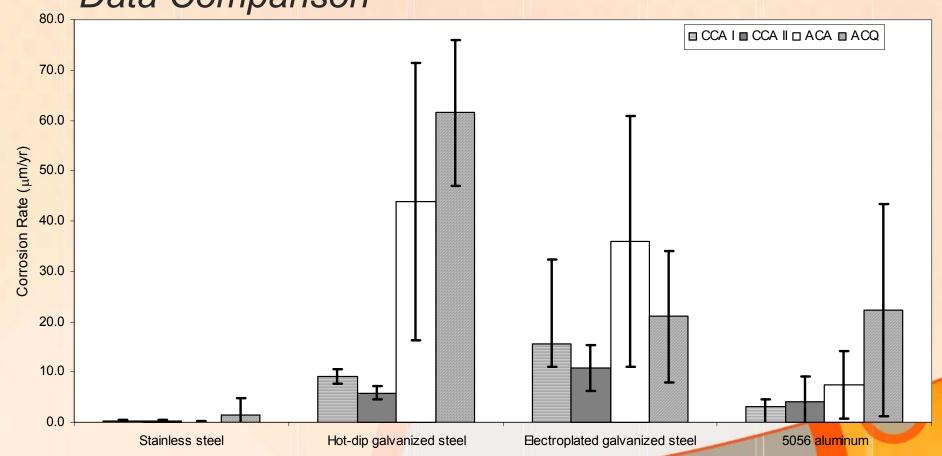

- Cons
 - Time consuming
 - Cleaning techniques cause additional uncertainties

11010101010111010000

Surface areas not well defined


Forest Products Laboratory

Surface Area Algorithm


10101010101110101000

Forest Products Laboratory

Forest Products Laboratory

Data Comparison

Summary

- Corrosion- A kinetic phenomenon
- Testing- Quantitative methods being developed
- Design

Product	Design Consideration
Stainless Steel	Combining with a different metal
Metallic Coatings (anodic)	Combining with a different metal
	Corrosion rate of coating
Metallic Coatings (cathodic)	Combining with a different metal
	Defects in coating
	Construction damage to coatings
Organic/Ceramic Coatings	Defects in coating
	Damage to coating during construction
Barriers	Defects in barrier
	Damage to barrier during construction