

Fungi in Buildings: Are they all they can be?

Sheathing Materials

Plywood
Oriented Strandboard
Wood/Cement composites
Wood/plastic composites

Sheathing Purposes

Provide resistance to lateral loads (wind, earthquake, etc) in wood frame structures

Sheathing Issues Water intrusion Swelling/Deformation Decay

Fungal Decay of Sheathing Materials:

> Implications for Performance

What We Want to Know Sheathing material durability Decay effects on sheathing properties Decay effects on sheathing assemblies **Can we predict wall behavior** during decay?

Durability of Sheathing Materials

- Douglas-fir plywood, aspen OSB, pine sapwood
- AWPA Soil block tests for 12 weeks
- Postia placenta & Trametes versicolor
- Weight loss used as measure of decay resistance

Trametes versicolor

Time (weeks)

Postia placenta

Conclusions

OSB had no resistance to fungal attack
Douglas-fir plywood experienced minimal weight loss

Decay Effects On Sheathing Properties

OSB, hem-fir plywood & s. pine plywood

P. placenta/G. trabeum/T. versicolor

Exposed 0-20 weeks @ 30 C
Determine mass loss, MOR/MOE

OSB Durability

Southern pine Plywood Durability

Hem-Fir Plywood Durability

Conclusions

Heat/Moisture significantly affected MOR/MOE Brown rots tended to affect plywood **G.** trabeum more aggressive in most cases

Decay Effects On Sheathing Assemblies

Assembly Test OSB Sheathing/Douglas-fir stud Postia placenta (Brown rot) **Assess density loss**, monotonic and cyclic loading **NIR/X-ray densitometry**

Effect of Decay on Ultimate Load

Conclusions

Weight losses were severe in OSB/mild in Douglas-fir
Failures were by pull through in sheathing
Decay effects were very slow

Composite Protection Moisture uptake Mold attack Decay Fire?

Protection Approaches
Alter wood chemistry
Enhance water repellency
Add biocides

Composite Treatment Options Pressure treatment Treating flakes/particles **Glue-line additives Vapor-phase treatment Supercritical Fluids**

Treatment Requirements Uniform distribution **Non-swelling Non-volatile Easily disposed** Inexpensive

Pressure Treatment Complete treatment Permanent swelling **Panel deformation**

AMERICAN WOOD-PRESERVERS' ASSOCIATION

STANDARDS 1999

Introducing the Introducing System Use Category System

Glueline Additives Primarily insecticides **Easily added** Affect bond properties **Little wood penetration**

Furnish Additives Evenly distributed Easily applied Affect bonding Must be low toxicity

Alternative Treatment Vapor boron/copper Supercritical fluids

Research Needs Non-swelling treatments Non-biocidal protection Improved education Improved training

