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Methodology

e Estimation of a parameter involves the
following steps:

e Collect spectra of calibration samples

 Develop a calibration (regression)
(y =B, + X,*B, + X,*B, * ........... + X*By)

e Collect NIR spectira of test (or unknown)

samples

' | e Estimate parameter of interest for test set
- i samples using the calibration




Partial least squares regression
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NIR fitted pulp yield (%)

Pulp yield calibration for Tasmania
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Within-tree property variation
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Within-iree property variation
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Application of NIR to whole-irees

* Many studies, since late 1980’s

e Pulp yield, cellulose, lignin, exiractives

e Based on whole-iree composite chips
 Examination of within-tree variation of PY

e Studies have shown that breast height cores
provide similar calibration statistics to

composite chips for whole-tree properties

e = nondestructive estimation of whole-tree

properties




Within-tree variation of
pulp yield

e Little is known about the within-tree variation of
pulp yield. NIR predictions of pulp yield can be

used to obtain maps that show the variation




Whole-tree chip versus core calibrations

1.0
- Core and whole-tree
0.8 calibrations were
similar for basic
o density, pentosans,
R2 specific cons and total
lignin
0.4
e Core calibrations
02 could be used to rank
' frees
0 * 1.30 m identified as
Basic soda Pento- Pulp Specific Total the most suitable
Density Charge sans yield Cons. lignin sampling height
Wood property calibrations B Whole-tree

Schimleck et al. (2005). Estimation of whole-tree
M 0.65m core wood quality traits using near infrared spectra

B 1.30 m core collected from increment cores. Appita J. (in press)



Application of NIR to lumber

e Meder et al. (2003)

e 185 P. radiata cant centers scanned by NIR in

mill scale trial

e Aim to ID corewood stiff enough to be graded

as MGP 8 (lowest structural grade)

e MGP 8 worth S80/m?3 more than non-structural

 Data from 409 boards available for regression
e Calibration R? = 0.54 (big logs)
e Calibration R2 = 0.57 (small logs)

e Sufficient for economic segregation of cants




Bruker Matrix-F scanning a cant
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Picture courtesy A. Thumm and R. Meder, Forest Research, New Zealand




Application of NIR to lumber

e Meder et al. (2003) cont.

e Based on stiffness, 50% of central boards could
be upgraded to MGP 8

e Further calibration expected to increase

percentage of upgraded boards

e Many upgraded boards were unstable

e Both stiffness and stability (twist) must be
predicted for NIR to be useful for segregating

radiata pine structural timber

e Calibration for twist investigated (R? = 0.26)




Application of NIR
o short-clears

e Several studies reported, different species
and approaches

e Hoffmeyer and Pedersen (1995) P. abies
e Gindl et al. (2001) L. decidua
e Thumm and Meder (2001) P. radiata

e Schimleck et al. (2001) E. delegatensis,
Schimleck et al. (2001) P. radiata

e Via et al. (2003) P. palustris
 Kelley et al. (2004) é softwood species
e Density, MOE and MOR examined




Measuring Mechanical Properties

Increment Bending
Core Specimen
(SilviScan) (Instron)




NIR-MOE

Stiffness (Bending Specimens)
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NIR-MOR

Strength (Bending Specimens)

Calibration (313 Prediction (156
specira) specira)
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Application of NIR to cores

Properties examined :

Tracheid length (FQA) .

Cellulose, sugars, lignin (wet h
chemistry) Y

Air-dry density, MFA, stiffness,
tracheid properties (SilviScan)

Radial strips cut from cores J ’o- - ! ~
used but core surface OK for .J’ ’”
NIR spectroscopy h ("‘: 5.
., .=




Georgia-wide calibrations

P. taeda grown in 3 regions in Georgia

Three sites selected as being

representative of each region
Selection based on site index

Ten frees selected per site representing a

range of breast height diameters

Pith-bark breast height samples obtained



Georgia-wide calibrations

e Strong calibrations for density, MFA,
stiffness and tracheid coarseness, length
and wall thickness

 These calibrations performed well on the
separate test set

e Sirong calibrations for cellulose, lignin,

:::". glucan, arabinan, mannan and xylan
.';Il . ] ° ° °
g i  Moderate prediction accuracy - possibly
.
' due to the small number of samples

11111




MFA - 729 MSC tfreated specira
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Predicted MFA (225 specira)
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What resolution??

e Increasing resolution = decrease in

calibration accuracy

e Management of spectra becomes
difficult owing to large number of

specira

* Fiber optic probes with a small spot

size provides options




2 mm MFA calibration (4156 spectra)
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MFA (deg)
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Wood property calibrations — green versus dry wood
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S$S2-stiffness

Stiffness (green wood spectra)
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S$S2-stiffness

Stiffness (dry wood spectra)
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NIRVANA - Near Infrared Visual & Automated
Numerical Analysis

« Automated spectra collection
* High resolution video camera

 Real time property predictions

+ |deal for process monitoring &

QC applications

N VANA

NEAR INFRARED VISUAL AND AUTOMATED NUMERICAL ANALYSIS
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Conclusions — NIR speciroscopy

e Determination of within-tree variation
e Estimation of whole-tree properties

e Applicable to milled wood, short-clears,

increment cores

e Automatic scanning of cores possible
e * Important to improve resolution

e Green wood can be examined




