Chemical Modification of Wood: A Journey from Analytical Technique to Commercial Reality

Roger Rowell USDA, FS, Forest Products Laboratory and University of Wisconsin Madison, WI USA

Outline

Definitions Introduction Reaction Systems Acetylation

- History
- Properties
 - Moisture
 - Biological
 - Other

Applications Projected Costs Newest Technologies Conclusions

Chemical Modification

A chemical reaction between some reactive part of wood and a simple single chemical reagent, with or without catalyst, to form a covalent bond between the two.

This excludes chemical impregnations, monomer impregnation's that polymerize *in situ* but do not bond with the cell wall, polymer inclusions, coatings, heat treatments, etc.

Why Chemical Modification

- Analytical technique used to isolate cell wall polymers
- Change chemistry, change properties, change performance
- Another way to understand wood by changing a property and studying the change

Consider

- Wood was designed by nature to perform in a wet environment
- Nature has a very efficient recycling system to degrade wood back to its original building blocks of water and carbon dioxide
 - Biological, thermal, ultraviolet, moisture:
 Oxidation, Hydrolysis, Reduction, Dehydration,
 Free radical depolymerization

Assumptions

- The properties of any resource are, for the most part, a result of the chemistry of the resource,
- If you change the chemistry to change properties,
- If you change properties, you change performance.

Change Chemistry to Improve:

- Moisture sorption
- Dimensional stability
- Decay resistance
- Ultraviolet degradation resistance
- Thermal stability

- Insect resistance
- Hardness
- Toughness
- Compatibility with other resources

Reaction Systems

Anhydrides WOOD-OH +RC(=O)-O-C(C=O)-R \rightarrow WOOD-O-C(=O)-R Isocyanates WOOD-OH + R-N=C=O \rightarrow WOOD-O-C(=O)-NH-R Epoxides WOOD-OH + R-CH(-O-)CH₂ \rightarrow WOOD-O-CH₂-H(OH)-R

Acetylation Chemistry

WOOD-OH + $CH_3C(=O)$ -O-C(=O)- $CH_3 \rightarrow$ Acetic Anhydride

WOOD-O-C(=O)-CH₃ + CH₃C(=O)-OH Acetylated Wood Acetic Acid

History of Wood Acetylation

- 1928 Fuchs acetylated pine to isolate lignin
- 1928 Horn and Suida and Titsh acetylated beech to remove hemicelluloses
- 1930 Suida Austria Patent to acetylated wood.
- 1945 Tarkow acetylated balsa for decay resistance 1946 – Tarkow, Stamm and
 - Erickson acetylated wood for dimensional stability

- 1961 Goldstein et al. and Koppers' acetylated wood for commercialization
- 1977 Otlesnov and Nikitina acetylated Wood for commercialization
- 1980's Daiken in Japan commercialized wood acetylation for flooring
- 1986 Rowell, Sinonson and Tillman limit anhydride, no catalyst

Changes in Wood Due to Acetylation

PercentChange inVolume ofWeightWood VolumeChemicalGainAdded17.5 $3.0 \,\mathrm{cm}^3$ $2.9 \,\mathrm{cm}^3$

Weight gain and acetyl analysis agree Change in color: Light colored woods slightly darker, dark colored woods, slightly lighter

Stability of Acetyl Groups in Pine and Aspen Flakes after Cyclic Exposure Between 90% RH and 30% RH

WoodAcetyl content (%) after cycle (number)013213341Pine18.618.216.218.016.5Aspen17.918.117.117.817.1

Cycle time = 3 months

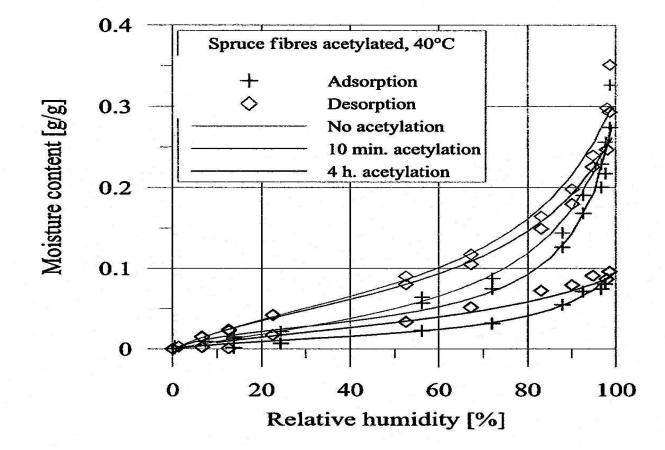
Distribution of Acetyl Groups in Wood

- Lignin fastest to react
- Almost complete substitution of lignin hydroxyl groups
- Approximately 25% of holocellulose hydroxyl groups substituted
- No cellulose hydroxyl substituted (some accessible surface hydroxyl on amorphous regions)

Acetylation for Dimensional Stability

- Effects on moisture sorption
- Effects on fiber saturation point
- Effects on liquid water sorption

Swelling pressure of wood



Equilibrium Moisture Content of Acetylated Pine Particleboard

Weight	Equilibriun	nt at 27C	
Percent Gain	30%RH	65%RH	90%RH
0	5.8	12.0	21.7
6.0	4.1	9.2	17.5
10.4	3.3	7.5	14.4
14.8	2.8	6.0	11.6
18.4	2.3	5.0	9.2
20.4	2.4	4.3	8.4

Sorption Isotherm for Acetylated Spruce

Fiber Saturation Point for Acetylated Pine and Aspen

Pine (%)	Aspen (%)
45	46
24	
	29
16	
	20
	15
14	
10	
	45 24 16 14

Dimensional Stability

24 hour water soak

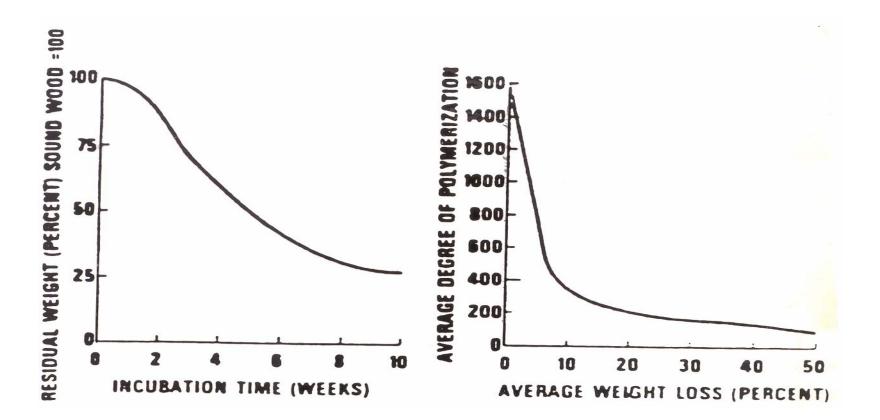
	S	ASE
Solid Pine		
Control	13.8	
Acetylated	4.2	69.3
Pine Fiberboar	d (5% phenolic resir	ı)
Control	21.3	
Acetylated	2.1	90.1

Effects of Size of Spruce Specimen on Acetyl Content

Specimen	WPG	Acetyl Content
Chips Acetylated	14.2	15.6
Acetylated Chips to Fiber	14.2	15.4
Chips to Fiber and then		
Acetylated	22.5	19.2
Acetylated Chips to Fiber	22.5	19.4
Acetylated Chips to Fiber		
and again Acetylated	20.4	20.5

Mechanism of Effectiveness

- Single site reaction reacting with **accessible** cell wall polymer hydroxyl groups
- Stable cell wall bulking from dry to the green volume
- Chemical modification does not exceed the elastic limit of the cell wall


Acetylation for resistance to biological attack

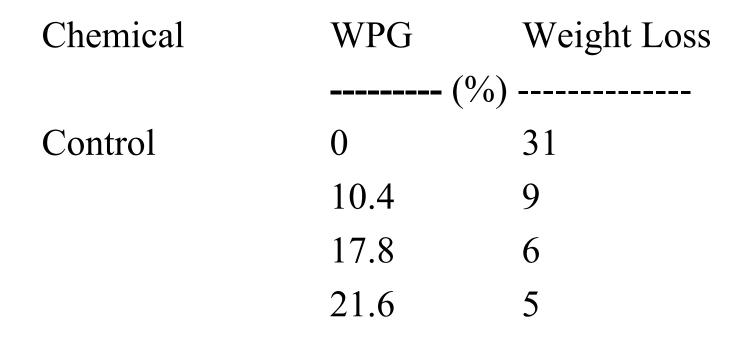
- Brown-rot fungi
- White-rot fungi
- Termites
- Marine organisms

Resistance of Acetylated Pine Particleboard to Decay Fungi

Acetyl	Weight Loss Aft	er 12 Weeks
Weight	Brown-rot	White-rot
Gain	Fungus	Fungus
(%)	(%)	(%)
0	61.3	7.8
6.0	34.6	4.2
10.4	6.7	2.6
14.8	3.4	<2
17.8	<2	<2

Strength Loss vs Weight Loss for Brown-Rot Fungi

Brown-Rot Attack on Wood


ENZYMES → HEMICELLULOSES (Energy source for generation of chemical oxidation system) → CELL WALL POLYMER MATRIX (Strength losses) (Energy source for generation of β-glucosidases) → WEIGHT LOSS

Acetylated Pine Particleboards in Fungal Cellar (Brown-, White-, Soft-Rot Fungi)

WPG	Rati	ing at inte	ervals (Mo	onths)				
	2	3	4	5	6	12	24	36
0	S/2	S/3	S/3	S/3	S/4			
7.3	S/0	S/1	S/1	S/2	S/3	S/4		
11.5	0	0	S/0	S/1	S/2	S/3	S/4	
13.6	0	0	0	0	S/0	S/1	S/2	S/4
16.3	0	0	0	0	0	0	0	0
17.9	0	0	0	0	0	0	0	0

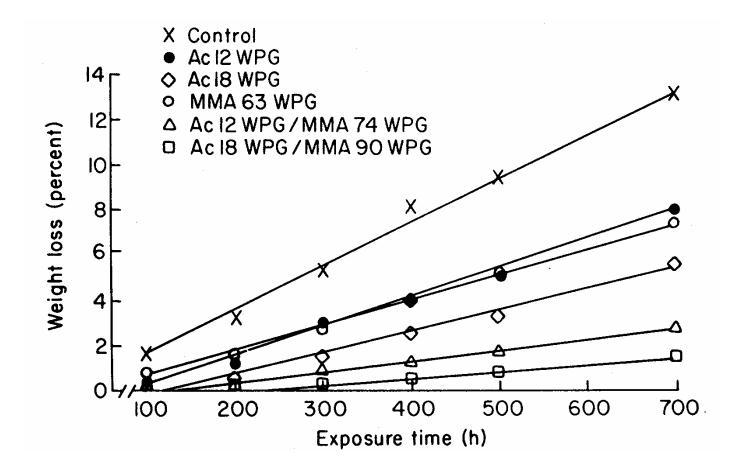
4 = Destroyed, 3 = Badly attacked, 2 = Some attack, 1 = Evidence of attack, 0 = No attack, S = Swollen

Resistance of acetylated pine to attack by *Reticulitermes flavipes* (2 week test)

Ratings of acetylated southern pine exposed to a marine environment¹

- WPGYears of
exposureMean rating due to attack by
Limnoriid andShaeromaTeredinid Borers2terebrans3
- 0 1 2-4 3.4
- 22.0 3 8 8.8
- ¹ Rating system 10 = no attack; 9 = slight attack; 7 = some attack; 4 = heavy attack; 0 = destroyed
- ² Installed in Key West, FL.
- ³ Installed in Tarpon Springs, FL

Mechanism of Effectiveness


- Stabilizes the hemicelluloses against enzyme attack (no water for hydrolysis)
- Changes conformation and configuration for enzymatic reactions
- Moisture content too low for biological attack on all cell wall polymers

Other Properties

- Weathering (UV Protection)
- Thermal
- Strength

Weight loss and erosion of acetylated aspen after 700 hours of accelerated weathering Weight loss Erosion Rate Reduction Depth of WPG in Erosion Penetration (%/hr) $(\mu m/hr)$ (%) (μm) 0.019 0.121 199-210 0 ____ 21.2 85-105 0.010 0.059 51

Weathering of Acetylated and Methyl Methacrylate Treated Pine

Thermal properties of control and acetylated pine fiber

WPGTemperatureHeat ofRate ofof MaximumCombustionOxygenWeight LossConsumption(°C)(KCal/g)(MM/g sec)0335/3752.90.06/0.13

21.1 338/375 3.1 0.08/0.14

Strength properties of control and acetylated pine fiberboards (10% phenolic resin)

WPG	MOR	MOE	IBS
	(MPa)	(GPa)	(MPa)
0	53	3.7	2.3
19.6	61	4.1	2.3
ANSI Standard	31		

Shear Strength

Yellow popular, Resorcinol formaldehyde - spread rate 70 lbs of mixture to 1000 sq. ft.

Shear	Wood
Strength	Failure
(MPa)	(%)
12.2	97.2
5.6	98.6
12.9	96.4
9.4	91.4
	Strength (MPa) 12.2 5.6 12.9

* 21 WPG

Application of Acetylated Wood

- Decking Pressure treated \$3.2 billion
 80% of total market
- Wood/plastic lumber
 - 2005 16% of market projected
- Acetylated wood
 - 20% Limited by anhydride supply

Other Applications

- Exterior doors both solid and molded
- Exterior windows
- Exterior structural and nonstructural
- Exterior siding
- Interior wet rooms

Industries in Acetylated Wood

Daiken – Japan (α-Wood) A-Cell – Sweden TitanWood – Netherlands and England Weyerhaeuser – United States

Cost of Solid Wood for Decking

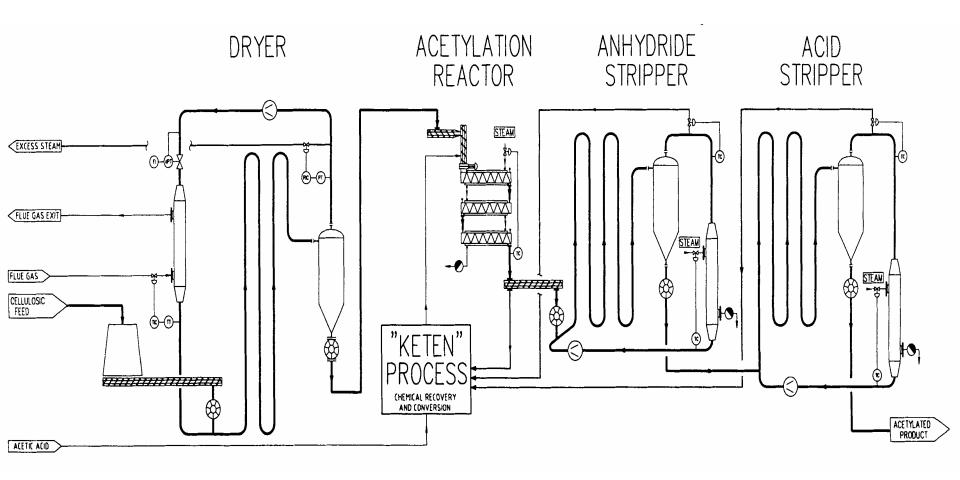
Unit	Unit Size	Cost/ft

Standard Treated	5/4 x 6 x 8	\$ 0.50 - 65
Plastic Lumber	5/4 x 6 x 8	\$ 2.75 - 5.90
Acetylated Lumber	5/4 x 6 x 8	\$ 3.50 - 4.50

Microwave Reactor in Sweden for Solid Wood

Cost Projections for Acetylated Fiber

Annual production (tonnes per year)


8,000 10,000 20,000 100,000

COST, US\$/lb#.31COST, US\$/lb*.32.27.20

BP Chemical 1992* A-Cell 2004

Fiber Acetylation Pilot Plant in Sweden

Conclusions

- Chemical modification provides a means of improving properties and performance of wood and wood composites
- Acetylation of wood provides a global infrastructure for improving dimensional stability, biological resistance with little change in weathering or thermal stability
- Acetylation will probably find its first application in the United States in residential decking and outdoor windows and doors.

Future Research

- Holistic approach to chemical modification (oxidation, hydrolysis, dehydration, reduction, free radical)
- More specific chemistry – only what you want and no more

- Cold plasma modification
- Enzyme modification

From the Wisdom of Pogo

WE ARE SURROUNDED BY INSURMOUNTABLE OPPORTUNITIES