Green Kerfing for Improvements in Drying and Future Utilization

R.W. EricksonProfessor emeritusLaura MoyaPh.D. student

Department of Bio-Based Products

What's the problem?

Unsatisfactory drying

- Pieces inadequately dried
- Pieces that are over-dried

Too much warp

- Crook, Bow and Twist
- How crook is sometimes "corrected"
 - ✓ The cross-cutting approach
 - ✓ The hand-held planer approach
 - ✓The "remove and replace" approach

• Economic cost

- 600 million Euros lost to warp
- Importance of straightness to builders
- Solid lumber lost to alternatives of higher cost and energy requirements

Customer satisfaction

- Contractors wary of solid lumber
- Do-it-yourselfers unhappiness
- The mold problem
- Improved preservative treatments?

Is there any solution?

- Taking advantage of parallel- to-grain moisture movement
 - End-grain drying is rapid
 - However, small area available
- Possible warp benefits?
 - Based on alteration of MC gradients
 - Breaking parallel grain into segments

Our approach

Creating end grain

- Saw kerfs perpendicular-to-grain on wide surfaces

The magic of the I-joist

- The I-joist and the 2 by 12 have equal I values
- If kerfed as shown, the I value is 90% of that for the solid cross section. $I_k \div I_s = 0.90$

I value for a green 2 by 4

- The sketch illustrates the effect of kerfing in the green condition on the I value of the nominal 2 by 4.
- The ratio of I_k to I_s is 0.92.
- The small reduction in I value, especially in the context of stud grade, is a small price to pay for the possible improved drying.

Some drying results

- 40 boards-20 controls and 20 kerfed-100" long.
- Dried at 190°F dbt, 174°F wbt and 800 fpm.
- 16 full-length kiln samples-8 of each treatment.

- -10% average MC for the kerfed in 22 hours but for controls 41hours
- At 10% average MC the ranges were comparable

Some warp results

- Warp data: MC's of~8% for kerfed, 9% for controls
 - Crook and bow reduced over 50% by kerfing.
 - Twist, in the absence of restraint, severe for both.
 - Stud grade recovery, based on crook much higher for kerfed.

Strength values in bending

- Testing after 50-day "equalization" and in accordance with ASTM-D 1037-99.
 - Mean Peak load for kerfed 95% of control's.
 - Mean MOE 15% higher for kerfed.
 - Peak load mean deflection for kerfed 75% of that for controls.

Data from edgewise bending, 82" clear span & concentrated load at mid-span

		Peak Load (lb)	Load at PL (lb)	Deflec. at PL (in)	Deflec at Peak Load (in)	MOR (ksi)	Stress at PL (ksi)	MOE (ksi)
20 K	Mean	708.6	334.9	0.75	1.61	4.7	2.2	949
	Range	143-1295	119-557	0.41-1.21	0.70-2.94	0.9-8.7	0.8-3.7	427-1381
20 C	Mean	744.6	353.5	0.92	2.16	4.9	2.4	8.23
	Range	409-1228	166-732	0.53-1.56	1.74-3.64	2.7-8.2	1.1-4.9	503-1200

Table 4-11 Wood Handbook, 1987

Table 4-11-Approximate middle trend effects of moisture content on mechanical properties of clear wood at about 20 °C

	Relative change in property from 12 percent moisture content			
Property	At 6 percent moisture content	At 20 percent moisture content		
	Per	cent		
Modulus of elasticity parallel to the grain	+9	-13		
Modulus of elasticity perpendicular to the grain	+ 20	-23		
Shear modulus	+ 20	-20		
Bending strength	+ 30	-25		
Tensile strength parallel to the grain	+8	-15		
Compressive strength parallel to the grain	+ 35	-35		
Shear strength parallel to the grain	+ 18	-18		
Tensile strength perpendicular to the grain	+ 12	-20		
Compressive strength perpendicular to the grain				
at the proportional limit	+ 30	-30		

Wood as an Engineering Material. USDA Forest Products Lab. Agr. Hdbk. 72

Some MC and SG data

 Kerfing improved average, shell and core, and range of MC. Mean SG for kerfed 96% of that for controls. If due to a real effect, it suggests less shrinkage for kerfed boards.

Percent MC and SG immediately after strength testing

	Avg.MC by meter ¹	Avg. MC by OD	Avg. shell MC by OD	Range of shell MC	Avg. core MC by OD	Range of core MC's	Avg. SG ²	Range of SG
Kerfed	9.0	9.7	9.0	8.2-9.5	9.9	9.2-10.6	0.39	0.35-0.47
Controls	9.7	10.2	9.7	9.2-10.6	10.5	9.5-11.7	0.41	0.35-0.52

¹ Obtained by resistance type meter just prior to strength testing

² Based on ovendry weight and ovendry volume

Conclusions

- Kerfing of 6" spacing reduced drying time to 10% average MC by over 45%.
- The kerfing reduced the absolute amounts of crook and bow by over 50%.
- Stud grade recovery, based on crook was 50% for controls and 85% for kerfed.
- Twist, in the unrestrained drying, was not reduced by kerfing.
- Lower and more uniform final MCs yielded higher MOE for kerfed boards.
- Warp reductions by kerfing were permanent.

Thanks for listening! Any questions?

US Patent Pending