48th Annual Convention Society of Wood Science and Technology

New Protection Systems With Silicones and Silanes

C. Mai, S. Donath, O. Weigenand, H. Militz

General Aspects

- Si is the second most frequent element on earth
 - Makes up 27.5% of the earth's crust
 - Is predominantly found as polymeric SiO₂ : m SiO₂[·]n H₂O - [Si(OH)₄]
- Si occurs in higher concentration in tropical wood species

General Aspects of Silicon

Natural process of silification: Petrified wood

From: Museum of natural history, Vienna

- Silanes: Hydrogen compounds of silicon Si_nH_{2n+2} (n=1-15) $H_{H} = Si_{H} = H_{H} = Si_{H} = Si_{H} = H_{H}$ $H_{H} = H_{H} = H_{H} = H_{H}$ Disilane
- Halogen silanes: SiH₃Cl; SiH₂Cl₂, SiHCl₃
- Silicic acid:

Chemistry and Nomenclature of Silicon Compounds

• Silanol: H₃SiOH Silanediol: H₂Si(OH)₂ etc.

 Silicone (polyalkylsiloxane): Organic derivatives of poly(silicic acid)

 $\mathbf{R} = \mathbf{A} \mathbf{I} \mathbf{k} \mathbf{y} \mathbf{I}$

Si-C bond is stable towards acids and bases

Aims of Silicon-Treatment

- 1. Protection against degrading and staining fungi and insects
 - Basidionmycetes / Moulds
 - No biocide
- 2. Improvement of properties related to moisture and weathering
 - Swelling /shrinkage
 - adhesion of coatings and varnish
 - UV degradation

Incorporation of silicon compounds into the cell wall

Aims of Silicon-Treatment

3. Improvement of elasto-mechanical properties

- hardness
- tensile strength
- fire resistance

Can be achieved by deposition of silicon compounds into the lumina of the wood cells

Treatments

- Inorganic silicates ("water glass")
- Silanes (sol-gel process)
- Silicones
- Micro-emulsion technology

"Water glass"

What is "water glass"?

- Water-soluble K or Na-silicates or their solutions
- Alkaline (pH over 12)

• **Problem: Fixation:**

- Precipitation in the wood through acids
- Precipitation with salts (CaCl₂, $Al_2(SO_4)_3$, borax)

"Water glass"

Fixation:

Matthes et al., Erfurt (1998 - 2003)

- Precipitation through CO₂ from air
- Needs several weeks for curing

Furuno et al. (1991 - 2001)

- Precipitation through salts (2 impregnation steps)
 - E.g. boron compounds, $AI_2(SO_4)_3$ or $CaCI_2$, $BaCI_2$

"Water glass": white / brown rot

"Water glass": white / brown rot

C. puteana (Pine)

"Water glass"

Results

- Decay resistance (EN 113)
 - High
 - Because of high pH
- Enhanced fire resistance
- Increased hygroscopicity
- High pH (problems at high drying temperature)
- Mechanical
 - ASE low increase
 - Hardness unchanged or increased
 - Strength is significantly reduced
 - Dynamic MoE un-changed

"Water glass"

MASID umwelterhaltende Produkte GmbH

"Woodbliss": (aqueous solution, pH >12)

More than 10% silicate (water glass),
 up to 10% silicic acid (to improve penetration)

Timbersil (Springfield, VA)

"Sodium Silicate Technology (SST)"

Treatments

- Inorganic silicates ("water glass")
- Silanes (sol-gel process)
- Silicones
- Micro-emulsion technology

Wood-inorganic composites by sol-gel process

- Two stage process
 - Hydrolysis (here Silicic Acid Esters)

- Condensation

End product is an amorphous silicate (glass)

Silane Types

Y = "Organo-functional group" OX = "Silicon-functional group, OCH₃, OC₂H₅ etc.

Saka et al. (1992 - 2001) How to treat?

- Si must incorporated into the cell wall!!
- Pre-conditioning of wood to fibre saturation point
 - Impregnation with TEOS in ethanol (free of water)
 - Condensation in the cell wall
- ASE: about 42%
- Water uptake is reduced

Böcker et al. (2001), Böttcher et al. (1999)

Silanes are hydrolysed before the impregnation. Impregnation is performed with pre-condensed sols (in ethanol)

- Properties:
 - WPG: 5 50%
 - Reduced moisture content
 - ASE: 60% (at 45% WPG)
 - Low decay resistance
 - Enhanced by boron addition ("controlled release")

Alkoxysilanes

Impregnation Methods

"Sol impregnation"

- 1. Conditioning of Wood Samples at 65% r.H.
- Hydrolysis of the silane (Pre-hydrolysis)
- 3. Impregnation with Sol
- 4. Curing at 103°C

"Silane impregnation"

- Conditioning of wood samples at 100% r.H. (fibre saturation)
- 2. Impregnation with silane/catalyst mixture
- 3. Curing at 103°C

Wood Samples

Examination	Wood Species	Sample Size
Water Uptake,	Beech	25 x 25 x 10 mm
Dimensional stabilization		(rad x tang x long)
Soil Bed Test	Pine Sapwood	5 x 10 x 100 mm
(ENV 807)		
Basidiomycete Test (Mini- block) (<i>T. versicolor, C. puteana</i>)	Beech Pine Sapwood	5 x 10 x 30 mm

Penetration of Silanes

Sol (pre-hydrolysed)

Silane (monomer)

WPG (beech)

Dimensional stabilisation (beech)

Water Immersion Test

Soil Bed Test (ENv 807)

Basidiomycete Test (mini-block)

Mass Loss of Beech after 6 Weeks Exposure to Trametes versicolor

Weathering

Reverse sides of wood samples after 1 year of weathering in Göttingen

Conclusions (Silanes)

- Good penetration of monomeric silane in pine and beech
- Ageing during several weeks
- Slight or no reduction of moisture uptake
- Slight dimensional stabilisation
- Good hydrophobation effects with alkyl-silanes
- Alkyl-silanes improved resistance against fungal attack only initially

Silanes – Two-step Processes

Covalent Fixation to the cell wall

- 1. Reaction with organo-silanes
- 2. Reaction with TEOS

EETMOS-TEOS β-(3,4 epoxycyclohexyl) ethyl trimethoxysilane VTMOS-TEOS vinyl trimethoxy silane

Institute of Wood Biology and Wood Technology University of Göttingen

High ASE !

Treatments

- Inorganic silicates ("water glass")
- Silanes (sol-gel process)

Silicones

Micro-emulsion technology

Silicones

Silicones are polydimethyl siloxanes!

Silicones Emulsions - Penetration

Dimensional stability (Pine)

Silicones - Decay Fungi (12 weeks)

Silicones - Outside Weathering

Silicones - Outside Weathering (6 month)

Front side

untreated

Reverse side

untreated

treated

Conclusions (Silicons)

- Penetration was dependent on the particle size of silicone emulsions
- Micro-emulsions enhanced the dimensional stability
- Reduction of moisture uptake and increase in weathering stability
- Decay resistance was dependent on functional groups on the siloxane backbone

Treatments

- Inorganic silicates ("water glass")
- Silanes (sol-gel process)
- Silicones
- Micro-emulsion technology

WACKER SMK[®] Technology

Micro-emulsions of some 10 nm diameter

• Emulsifier:

- N-(2-aminoethyl)-3-aminopropyl trimethoxysilane + α,ω-dihydroxy-methylpoly siloxane +KOH
- Co-Emulsifier:
 - Isooctyltriethoxy silane
 [15g + 80g A + 4g propionic acid]

Hydrophobic compound:

Silane, siloxane, polysiloxane

- Silane, siloxane, polysiloxane
 Silane, siloxane
 - Functional polysiloxane

Good water repellent effect, but no increase of ASE

Conclusions (general)

- Wide variety of chemicals is available
- Various wood properties can be improved
- Improvement of decay resistance is low
- Decay resistance can be enhance by combination with other compounds ("controlled release")
- High water repellence
- Application in use-class III (EN 335)

Thank you for your attention!

DV03-4

DV15-1

ANTINA I I