

S.Y. (Tony) Zhang, Group Leader Resource

Hou Z.-Q., PDF and Lin J. Hu Research Scientist

Standing Tree Density

- Affect wood properties and end uses
- Little work done

X-ray Scanning Technique to Determine Density

- Lumber
- Composite wood panels

Computer Tomography (CT) X-Ray Scanning Technique

Images of inside of logs

Examine the feasibility of determining standing tree density using X-ray scanning technique

Fresh logs

from beech and

baslsam fir

Experimental Procedure

- 1) Cut butt logs from standing trees and sealed logs in plastic bags
- 2) CT X-ray scanning using Siemens's SOMATOM Plus 4 Volume Zoom computer tomography (CT) system for multi-slice spiral scanning
- Destructive determination of log density using 51 mm (2 in.) discs cut from the log specimens

Experimental Procedure

- 4) Determination of moistrue contents of the discs using oven dry method
- 5) Analysis of X-ray attenuations (CT numbers) mesured by CT scanner using Matlab program
- 6) Development of prediction equations for fresh log density from CT number by linear regulation analysis

Siemens's SOMATOM Plus 4 Volume Zoom CT X-Ray System

THE

SUP MUNU

www

Parameters for CT X-Ray Scanning Log Specimens

- X-ray tube kilovoltage: 140 kVp
- X-ray tube current: 178 mA
- Volume element of the section that was scanned (voxel) of 0.78 \times 0.78 \times 10.00 mm 3
- Interval of reconstructed sliced images along the longitudinal direction of the log: 51 mm (two inches)

Image of Cross-Section of Log Specimen

Beech

Resource Assessment and Utilization

Fir

Relationship between fresh log density and X-ray attenuation

Average CT number of the corresponding cross-section image

Relationship between fresh log density and X-ray attenuation

Fresh fir-log

Average CT number of the coresponding cross-section image

Discrepancy of predicted density from measured density (%)

Log species	Absolute Mean	Maximum	Minimum
Fresh beech	0.7	2.2	-1.5
Fresh fir	2.5	8.0	-12.2

Factors Affecting the Accuracy

Uniformity of Density Distribution

Log species	Coefficient	Coefficient Variance (%)		
	Longitudinal	Radial		
Fresh beech log	2.6	9.6		
Fresh fir log	4.3	16.9		

Moisture Content (%)

Log species	Average	Standard Deviation	Coefficient Variation (%)
Fresh beech	68.5	1.4	2.0
Fresh fir	107.5	7.2	6.7

Longitudinal Density Distribution

Longitudinal position from big end

Longitudinal Density Distribution

Longitudinal position from big end

Prediction of Radial Density Distribution Along Profile-1 of a Cross-Section of Fresh Beech Log Specimen

Across-Pith Radial Density Distribution Along Profile-1 of a Fresh-Beech Log Cross-Section

Prediction of Radial Density Distribution Along Profile-1 of a Cross-Section of Fresh Fir Log Specimen

Across-Pith Radial Density Distribution Along Profile-1 of a Fresh-Fir Log Cross-Section

Conclusion & Recommendation

- 1) X-ray scanning is a promising technique to non-destructively determine fresh log density
- 2) Portable X-ray device is needed for standing tree density determination
- 3) Further research is needed to improve the accuracy and effectiveness of its application to various species of standing trees

Partner in Providing Added Value to the Wood Products Industry

www.forintek.ca

