Detection and 3D Visualization of Wetwood in Subalpine Fir Trees Using Industrial X-ray CT Imaging

Dr. Sencer Alkan, Research Scientist Dr. <u>S.Y.(Tony) Zhang, Senior Scientist/Group Leader</u>

Subalpine fir

one of the most abundant tree species in B.C.

constitutes 1.13 billion m³ of standing tree volume in B.C.

22% of total softwood volume and 45% and 36% of standing volume in Prince Rupert and Prince George regions of B.C.

Jozsa, L.,1991

underutilization is in part due to:

-a high percentage of wet-wood within its stems

problem:

-....lack of knowledge on quantitative variation of

wetwood within stems

.....substantial economic losses occur when wet-wood affected timber converted into *endproducts*

Solution?

-To adapt a non-destructive imaging techniques to obtain the internal information

- To develop a three 3D model of the subalpine fir tree as a tool that can accurately describe and measure every log by its internal and external properties

To determine feasibility of X-ray computed tomography (CT) scanning for imaging wetwood in subalpine fir logs

To develop software to detect wetwood in CT images

To develop a 3-D subalpine fir stem model based on CT images to determine 3-D distribution of wetwood in stems

Material

A total of 3 sample trees (total 9 logs, each 5m in length) were

sampled from subalpine fir natural stands in northern

Kamloops region in B.C.

CT Scanning of Logs

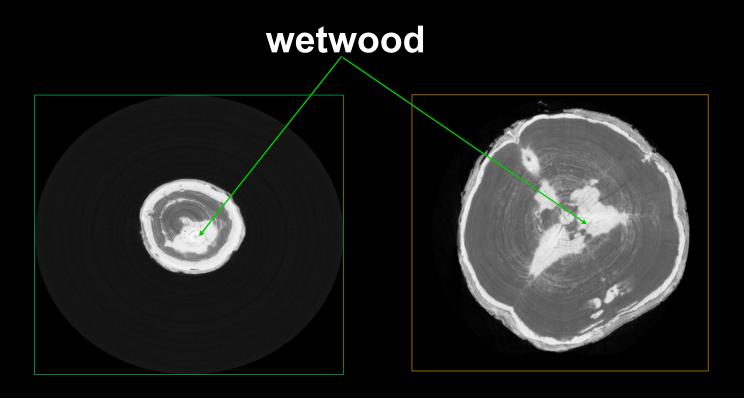
Forintek/UNBC CT Imaging Centre

A joint project by:

Forintek Canada Corp. and University of Northern British Columbia

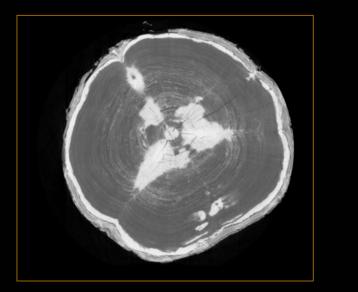
Infrastructure funding from:

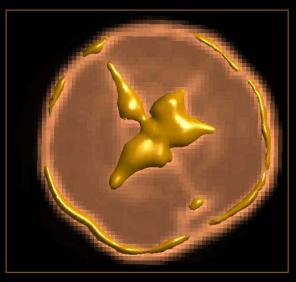
Canada Foundation for Innovation and B.C. Knowledge Development Fund


CT Scanner Specifications

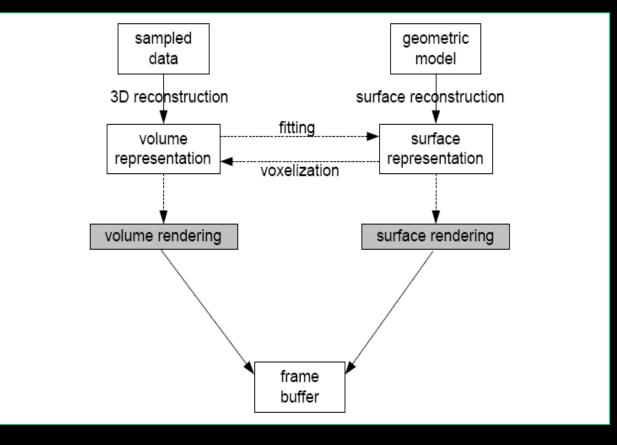
- X-ray energy: 3.5MeV
 CT slice thickness: 0.5 10 mm
 512 detector channel
 Spatial pixel resolution: 0.6 mm
 Intensity resolution:8 or 16bit grayscale
 Scan interval: adjustable
- Maximum object diameter: 90 cm
- Maximum length: 5 mMaximum non-wood material:
 - 500 mm for aluminum
 - 200 mm for steel
- Scan time: 0.4 5.0 min / slice

Subalpine fir CT images

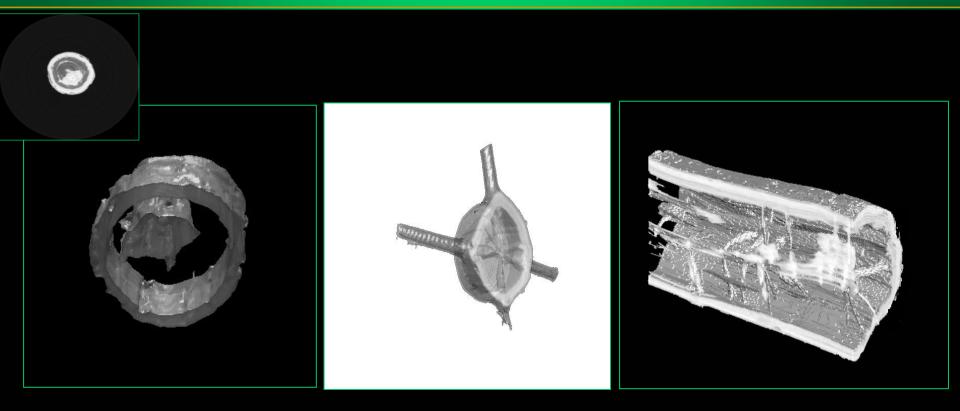




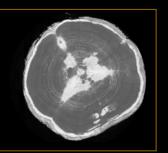
2-D wet-wood detection

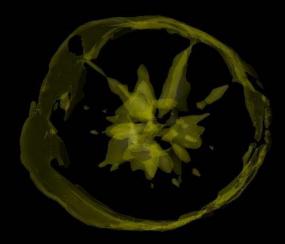

extracted feature

original CT slice


3D reconstruction model(CTSTEM)

Reconstructed 3D log features


3D wetwood A knot whorl 3D wetwood



Reconstructed 3D log features

3-D log shape

3-D log shape and wetwood

Reconstructed 3D log features

Example volume (in m³) calculation of features

CT slice No	Wetwood	Heartwood	Sapwood	Knot
4-99	0.001417	0.04571911	0.02373209	0.001416
100-199	0.000131	0.04126757	0.02430127	0.001595
200-299	0.000982	0.04668576	0.02382522	0.000932
300-403	0.000631	0.04901418	0.02330185	0.001732
404-499	0.005499	0.03932908	0.02066396	0.001923

Imaging Centre

> Computer Tomography scanning (CT) scanning is a powerful research tool for acquiring data for the modelling and visualization of different stem properties of subalpine fir species.

> CTSTEM is capable of automatic detection, 3D modelling and visualization and calculation of parameters of subalpine fir stem modelling units (wetwood, sapwood boundary, knots, and branch segment).

⊠: alkan@van.forintek.ca

: tony.zhang@qc.forintek.ca

Thank you/Merci