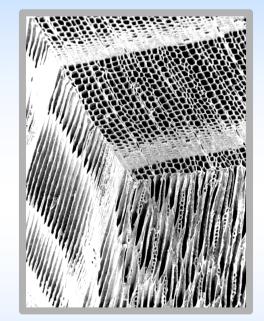
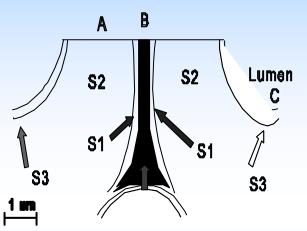
The Relevance of Surface Properties & Wood Finishes to the Wood Science & Technology Research Community

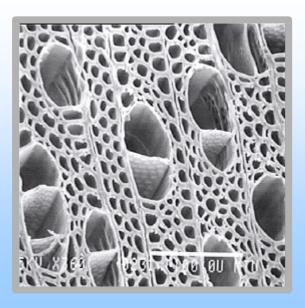
Douglas J. Gardner University of Maine


THE 2nd ANNUAL FUNDAMENTAL DISCIPLINES SESSION

Outline

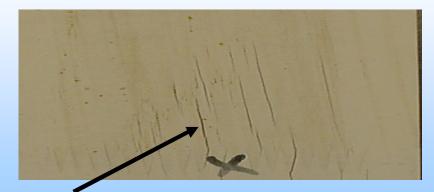
- Overview Wood Surface Properties
- Where is research being done?
 - Survey University Programs In North America
 - Federal Labs (USDA and Forintek)
- Panelization (A practical finishing challenge)
- Opportunities


Wood Finishing Considerations


- Wood is a porous material
- Wood is also an anisotropic material
- Wood surface chemistry is heterogeneous
- Wood swells and shrinks as a function of moisture content

SEM - Softwood

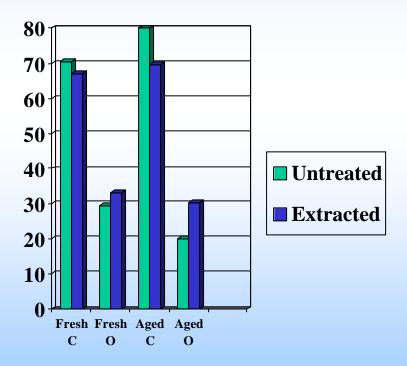
SEM -Hardwood



Wood Surface Property Issues

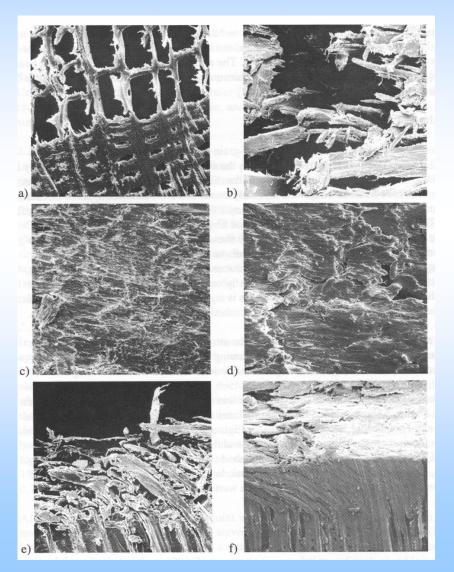
Inactivated surface

- Impact of Processing
 - Machining
 - Drying
 - Aging
- Weak Boundary Layers
 - Chemical (extractives)
 - Mechanical
- Application Environment
 - Temperature
 - Relative humidity

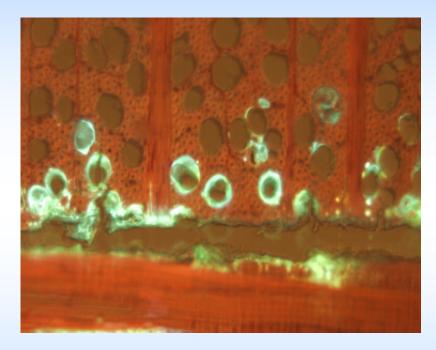

Fresh surface

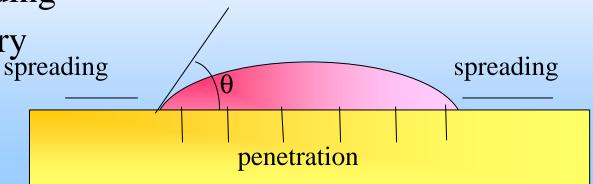
Wood Surface Chemistry

Elemental composition

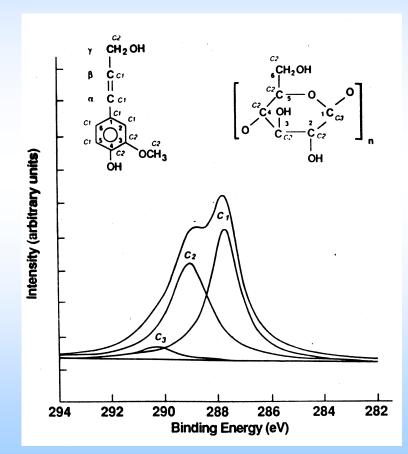

- Functional groups
- Surface thermodynamics
 - Acid-base character
 - Non polar character
- Molecular reorientation of surface functional groups
- Extractives dominate wood surface chemistry

XPS Data for Yellow-poplar


Wood Surface Morphology

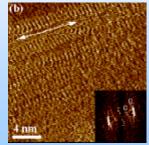

- Surface roughness
 - Improved mechanical interlocking
 - Changes in wettability due to capillary forces
- Mechanical weak boundary layer
 - Damaged fibers from machining processes
 - Cracks or splits

Adhesion Bonding Mechanisms


- 1. Mechanical Interlock
- 2. Diffusion Theory
 - Interpenetrating Network
- 3. Wettability Theory
- 4. Electrostatic
- 5. Covalent Bonding
- 6. Weak Boundary Layers spreading

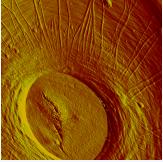
Measuring Surface Properties

- Contact angle analysis
- Inverse gas chromatography
- X-ray photoelectron spectroscopy
- Infrared/Raman spectroscopy
- Microscopy
 - Electron
 - Optical
 - AFM

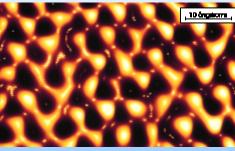

FRP Laminate

1 meter

Bond line micrograph


100 microns

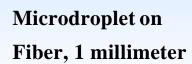
Valonia **10 nanometers**



Glulam-FRP 10 centimeters

Bordered Pit

10 microns



1 nanometer

Shear specimen 1 centimeter

UF Resin on loblolly fiber (2 micron scan)

Cellulose nanocrystals 200 nm long, 10 nm wide

Wood-Orders

Survey of Wood Science Programs

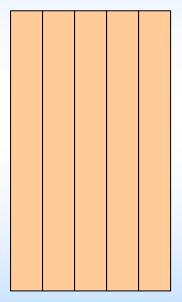
Number	Institution	Fundamental	Applied
1	Laval University	No (Planned)	No (Planned)
2	North Carolina State University	No	No
3	Louisiana State University	No	No
4	Mississippi State University	No	No
5	Oregon State University	No	No
6	Washington State University	No	Planned (Coatings for wpcs)
7	Virginia Tech	No	Yes (Product Analysis)
8	University of Maine	Yes (Coating diffusion)	No
9	University of British Columbia	Yes	Yes
10	University of Tennessee	No	No

Panelization

- Two studies sponsored by the Maple Flooring Manufacturers Association (MFMA)
 - 1997
 - 1998
- 2002 Deposition in front of a legislative committee in Delaware

What is "Panelization"?

• "Panelization" or edge-bonding is a condition where localized excessive cracks develop between some strip flooring boards while adjacent boards remain tightly bonded together with no apparent separations.

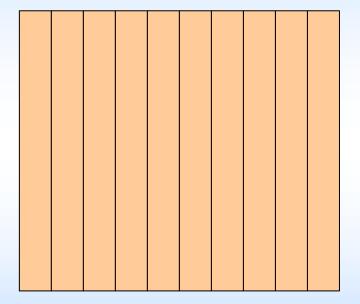

History of the Problem

- Not a new problem
 - Reports have been made over the past decade
 - Impact of VOC regulations
- Contributing Factors
 - Water-based sealers
 - Seasonal moisture fluctuations

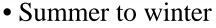
Causes of Panelization

Apply water-borne finishSome finish gets between the cracks

- •Wood Swells
- •Conditions to form an adhesive bond are met

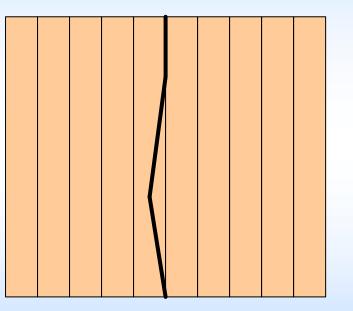


Unfinished Flooring


Panelized floor

Note: Oil-borne finish will not swell the wood

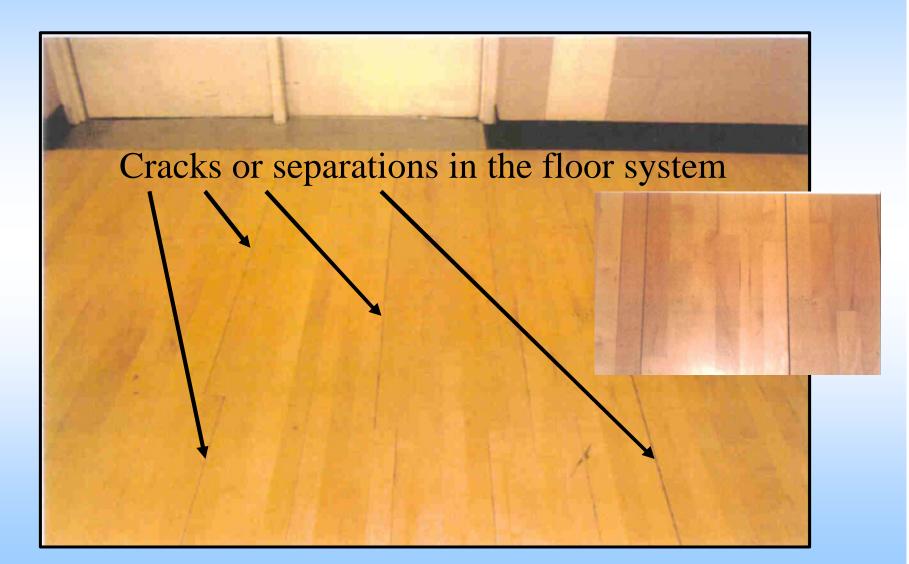
Causes of Panelization



Panelized floor

- Wood Shrinks
- Splits and Cracks

develop


Panelized floor response to seasonal climate change

Results of Panelization Occurrence

Splits in the Wood

Panelization

Opportunities

- Academic interest (wood scientists) in North America is minimal (Potential for a research niche?)
- Research Areas
 - Architectural Coatings
 - Furniture finishes
- Funding potential?
 - Government programs (USDA, NSF, DOE)
 - Coatings and Finishing Manufacturers